
 Linuxha.net Administrator’s Reference

Linuxha.net
Administrator’s Reference

Version Date Author Comments
Draft 1st December 2003 S. Edwards Work in progress - this covers version

0.4.0 of the “Linuxha” code.
0.4.1 1st January 2004 S. Edwards Improvements made after installation

testing of the 0.4.0 code base and changes
to reflect 0.4.1 software.

0.5.0 24th February 2004 S. Edwards Updates to documentation to support
changes between 0.4.0 and 0.5.0.

0.6.0 20th April 2004 S. Edwards Updates to include changes and features
introduced for version 0.6.0. Title and style
changed.

0.6.2 28th June 2004 S. Edwards Interim release for initial port to Linux 2.6.
0.6.4 22nd July 2004 S. Edwards Yet more changes reading for 0.7.0

release of software.
0.7.0 2nd September 2004 S. Edwards Further changes to detail features

introduced in version 0.7.0
0.8.0 Janary 2005 S. Edwards Guess what? Further program

improvements are documented, as well as
improved documentation for existing
features.

0.9.0 10th April 2005 S. Edwards Final version covering pre-release of 1.0.0.

Page 1

 Linuxha.net Administrator’s Reference

Table of Contents
1 Preface..9

1.1 Introduction..9
1.2 Document Organisation...9
1.3 Intended Audience...10
1.4 Conventions...10
1.5 Request for Feedback..11
1.6 Software Versions Covered...11
1.7 Understanding Linuxha.net Releases..11

2 Principals of High Availability...14
2.1 Redundancy...14
2.2 Availability..14
2.3 Client / Server Architecture..15
2.4 Linuxha.net Resource Limits..17

3 Managing Data Redundancy..18
3.1 Shared Storage Architecture..18
3.2 Replicated Storage Architecture...20

4 Data Replication with Linuxha.net..22
4.1 Choosing the Network Block Device..22
4.2 Using DRBD on the Command Line...23
4.3 Scenarios Requiring Resynchronisation..24
4.4 File System Support...25

5 Linuxha.net Solution Architecture...27
5.1 Definitions of Terms...27
5.2 Application Storage Management..28
5.3 Managing Cluster Consistency Status Information...30

5.3.1 Handling Specific Limitations...31
5.4 Cluster Status Daemon..31
5.5 Cluster Lock Daemon...32
5.6 Cluster Network Daemon...32
5.7 Application Monitoring with “Lems”..34

5.7.1 System Monitors..34
5.7.2 Application Monitors...34

5.8 Cluster Utilities...36
5.9 Third Party Software..37

6 Installing Linuxha.net...39
6.1 Hardware requirements..39
6.2 Typical Hardware Configurations...39

6.2.1 Configuration 1 - No redundancy...40
6.2.2 Configuration 2 - Basic network redundancy..42
6.2.3 Configuration 3 - Local Storage Redundancy..43
6.2.4 Configuration 4 - Complete network redundancy (Multi-pathing)............................43
6.2.5 Configuration 5 - Multiple Public Networks...44
6.2.6 Specific Hardware Concerns...45
6.2.7 Hardware Configuration Conclusions...45

6.3 Environment Configuration...47
6.4 Kernel Configuration..48
6.5 Prerequisite Software...48

6.5.1 Installing Tarp Package Management Software...49
6.6 Installation of the “linuxha” package...51

6.6.1 Manual Check for LVM Support...52
6.6.2 Update the Superuser's PATH...52

6.7 Installation differences between 2.4 and 2.6 kernels..53
6.8 Upgrading from previous Installations..53

7 Building the Cluster Configuration..55
7.1 Detailed Example Cluster Configuration...55
7.2 Initial Cluster Build...58

7.2.1 Field-by-Field explanation of “clconf.xml”...60
7.2.2 Heartbeat Considerations..64
7.2.3 Cluster Network and Locking Support..66

Page 2

 Linuxha.net Administrator’s Reference

7.2.4 Building the Cluster..67
7.2.5 Creating “resource” flags...69
7.2.6 Running the “clbuild” Utility..70

8 Building the sample “apache” package..72
8.1 Creating the Application Configuration File..72
8.2 Network Availability Considerations...76

8.2.1 Bonding verses Fail-over network Types...76
8.2.2 Supported Bonding Modes..78
8.2.3 Link-level checking verses IP level checking...78
8.2.4 Sharing Multiple IP addresses...79

8.3 Checking the Application Configuration..79
8.4 Validation / Build of Volume Groups...82
8.5 Allocating Application Resources...83
8.6 Synchronising the Cluster File systems...84

8.6.1 Managing Application File systems “outside” the cluster..85
8.7 Understanding Application Resources...86

9 Application Configuration and Monitoring...88
9.1 Start/Stop Script Interface Requirements...89
9.2 Providing a “Lems” Monitor for the application...90
9.3 Sample Process Monitor Implementation...91

10 Starting the Cluster..94
10.1 Forming a Cluster using “cldaemon”..94

10.1.1 When to use force to form a cluster...97
10.2 How a Cluster is Joined...97
10.3 Forming a Cluster using “clform”..97
10.4 Forming a Cluster on machine boot...98

11 Managing Applications in the Cluster...101
11.1 Starting Applications with “clstartapp”..101
11.2 Some typical Error Conditions when Starting Applications...102
11.3 Checking Application Status...105

11.3.1 The “File Systems” information..106
11.3.2 The “Process Monitors” information...107
11.3.3 The “General Monitors” information...107

11.4 Stopping Applications...108
11.5 Starting Applications (the easy way)..110
11.6 Managing application Monitoring..111

12 Application Removal..113
13 Stopping the Cluster...116

13.1 Stopping the Cluster Manually...116
13.2 Stopping the Cluster Automatically...116
13.3 Halting Individual Nodes..117
13.4 Adding Nodes to a Running Cluster...118

14 Adding further Applications..119
14.1 Purpose of this section...119
14.2 Application Storage Requirements...119
14.3 Application Configuration for cluster...121
14.4 Start and Stop scripts for “Samba” Application...123
14.5 User Environment..123
14.6 Cluster Configuration...124
14.7 Checking the new Application Configuration..126
14.8 Allocating Application Resources...127
14.9 Limitations with Samba Sample Application...130
14.10 Adding Applications: Common Problems...130

14.10.1 Mismatch Security Settings..131
14.10.2 Missing Mount Points...131

15 System Administrator Responsibilites..133
16 Managing Application Monitoring...136

16.1 Stopping Monitoring...136
16.2 Resuming Monitoring...138
16.3 Pausing a Module..139
16.4 Resuming a Module...139
16.5 Removing a Monitor...140

Page 3

 Linuxha.net Administrator’s Reference

16.6 Adding a new Monitor..141
16.7 Monitor Specific Communication..142
16.8 Log Management...143

16.8.1 Handling of Compressed Logs...144
16.9 Stopping and Starting the Lems Daemon Manually..145

17 Managing Cluster Daemons with “cldaemonctl”...146
17.1 Log File management..146

17.1.1 Application Specific Logs...146
17.1.2 Clstartapp and Clhaltapp specific Logs..147
17.1.3 Cluster daemon log files..147

17.2 Resetting Application Fail-over Capability..148
17.3 Stopping Application Fail-over Capability...149
17.4 Checking Cluster Status in a Script..149
17.5 Starting and Stopping Applications...150

18 Managing Configured Applications...152
18.1 Adding new file systems..152

18.1.1 Online Addition of file systems...152
18.1.2 Offline Addition of file systems...154

18.2 Removing existing file systems..155
18.2.1 Online Removal of File systems...155
18.2.2 Offline Removal of File systems...156

18.3 Changing existing file systems...156
18.3.1 Online file system expansion...157
18.3.2 Offline file system expansion...157

18.4 Modification of application parameters...158
19 Easier Application Management...159

19.1 Differences During Application Build..160
19.2 Using the “clrunapp” Utility...160
19.3 Using the “clform” Utility...162

19.3.1 Joining an Existing Cluster...163
20 Performing Software Upgrades..165

20.1 Background Information...165
20.2 Upgrading Clustered Applications..165
20.3 Upgrading Linuxha.net Software..167
20.4 Updating Operating System Software..171

21 Handling Failure Scenarios..173
21.1 Introduction..173
21.2 Common Failure Scenarios..173

21.2.1 Loss of a Network Link...174
21.2.2 Handling IP-level failures...177
21.2.3 Failure of Data Replication Network Connection..177
21.2.4 Application Software Failure..178
21.2.5 Stopping Fail-over (from application monitoring)..179
21.2.6 Process Monitor Administration..181
21.2.7 Node failure (Hardware or Operating System)...181

21.3 Managing Node Failure Scenarios...182
21.3.1 Checking Application Status...182
21.3.2 Recovering Application Data Availability..184

21.4 Loss of Server Main IP Interface..186
21.5 Loss of Cluster Daemon...188
21.6 Understanding Network Partitioning...189
21.7 Data Consistency Issues..191

22 Implementation details of “clstartapp” & “clhaltapp”..193
22.1 Supported Command Line Arguments...193
22.2 Default Argument Settings...194
22.3 Ascertaining Cluster Status..195
22.4 Starting cluster packages - Condition Decisions..195

22.4.1 Actions on a Clean Start-up...198
22.4.2 Actions on a Clean Shutdown..199
22.4.3 Actions on a non-Clean Shutdown (no remote available)...................................199
22.4.4 The “getmdlist” Utility...201

23 Implementation Details of “clrunapp”..202

Page 4

 Linuxha.net Administrator’s Reference

23.1 Introduction..202
24 Understanding the “Lems” Daemon...204

24.1 Introduction..204
24.2 The Lems Configuration File..204
24.3 The Lems Action List..208

24.3.1 Using the “RUNCMD” Action..210
24.4 Standard “Lems” Monitors..211

24.4.1 The “Flag_check” Module..212
24.4.2 The “Ip_module” Module..212
24.4.3 The “Link_module” Module..212
24.4.4 The “Ip_move_interface” Module...212
24.4.5 The “capacity_check” Module..213
24.4.6 The “swap_check” Module...213
24.4.7 The “Fsmon” Module..213
24.4.8 The “procmon” Modules...217

24.5 The “Lems” Server Messages..218
24.6 The “Lems” Module Object Method Requirements...220

24.6.1 Object Environment...221
24.7 The “Lems” Program Execution Requirements..221
24.8 Writing a Sample Lems Monitor...221

24.8.1 The “new” method..221
24.8.2 The “check” Method...223
24.8.3 The “stat” Method...223

25 Understanding the Cluster Management Daemon..224
25.1 Introduction..224
25.2 How the Cluster Daemon Interacts with an Application..224
25.3 Forming the Cluster - Cluster Daemon Initialisation...225
25.4 Protocol and Messages..227

26 Cluster Utility Scripts..235
26.1 Starting “nbd” or “enbd” Servers...235
26.2 Starting “enbd” Clients...236
26.3 Stopping “nbd” or “enbd” Clients..236
26.4 Generating “Raidtab” Configuration Files dynamically...236

 1 Cluster Resource Management..239
26.5 Application IP Address Management...239
26.6 NBD / ENBD Server Management...239

27 Kernel / System Software Configuration...240
27.1 General Configuration..240
27.2 The “Raid” and “LVM” Modules..240
27.3 The “bonding” Module..241

28 Custom Perl Modules...242
28.1 The “fsmap” Module...242
28.2 The “clutils” Module..244
28.3 The “clbonding” Module...244

29 Application Directories..247
29.1 Non-Standard Perl Packages...247

 A.Understanding “ENBD”..249
 A.Understanding “ENBD”..249
 A.Understanding “ENBD”..249

 I.Introduction..249
 I.Introduction..249
 I.Introduction..249
 II.An “Enbd” client / server Example Walkthrough..249
 II.An “Enbd” client / server Example Walkthrough..249
 II.An “Enbd” client / server Example Walkthrough..249
 III.Stopping the Client...250
 III.Stopping the Client...250
 III.Stopping the Client...250
 IV.Understanding Device Resource Allocation...251
 IV.Understanding Device Resource Allocation...251
 IV.Understanding Device Resource Allocation...251

 B.Using Raid Modules for Data Replication..253

Page 5

 Linuxha.net Administrator’s Reference

 B.Using Raid Modules for Data Replication..253
 B.Using Raid Modules for Data Replication..253

 I.Introduction..253
 I.Introduction..253
 I.Introduction..253
 II.Basic Raid Operations..253
 II.Basic Raid Operations..253
 II.Basic Raid Operations..253
 III.Understanding /proc/mdstat...253
 III.Understanding /proc/mdstat...253
 III.Understanding /proc/mdstat...253
 IV.Synchronising Multiple Devices...255
 IV.Synchronising Multiple Devices...255
 IV.Synchronising Multiple Devices...255

 C.Setting up SSH..257
 C.Setting up SSH..257
 C.Setting up SSH..257

 I.Introduction..257
 I.Introduction..257
 I.Introduction..257
 II.Step 1: Define Public/Private Key Pairs..257
 II.Step 1: Define Public/Private Key Pairs..257
 II.Step 1: Define Public/Private Key Pairs..257
 III.Defining Machine Definitions..258
 III.Defining Machine Definitions..258
 III.Defining Machine Definitions..258
 IV.Define SSH client authorization...258
 IV.Define SSH client authorization...258
 IV.Define SSH client authorization...258

 D.Guidelines for Editing XML Files..260
 D.Guidelines for Editing XML Files..260
 D.Guidelines for Editing XML Files..260
 E.Sample “Apache” Application Configuration...261
 E.Sample “Apache” Application Configuration...261
 E.Sample “Apache” Application Configuration...261

 F.Introduction...261
 F.Introduction...261
 F.Introduction...261
 G.Building the Volume Group..261
 G.Building the Volume Group..261
 G.Building the Volume Group..261
 H.Using the Sample files..264
 H.Using the Sample files..264
 H.Using the Sample files..264

Page 6

 Linuxha.net Administrator’s Reference

1 Preface

1.1 Introduction
The purpose of this administration guide is manifold;

Ø to describe the typical installation process;
Ø to define the support environment requirements;
Ø define how a cluster can be built;
Ø define how applications can be added to the cluster;
Ø cover the typical cluster management tasks that may be necessary;
Ø describe typical failure and recovery scenarios;
Ø provide a technical reference for developers.

This document is a significant update from previous versions; where possible references to
other “guides” that have been produced will be indicated. This document is now wholly aimed at
being the “reference” to Linuxha.net - the series of “guides” provide less in-depth material aimed
at documenting particular requirements. Hence both this document and the guides complement
one another.

This guide also attempts to introduce the general principals that guide most high availability
solutions, though of course all content will be geared towards solutions that Linuxha.net could
be architected for.

It should be noted that high availability although simple in principal is much more complex when
implemented, particularly when availability via data replication (which is the basis of of
Linuxha.net). The key aim of Linuxha.net is to hide as much complexity as possible whilst
providing a powerful environment for clustered application deployment.

The Linuxha.net product has a dedicated web site where documentation, news and latest
versions of the software can be retrieved from:

http://www.linuxha.net//index.pl?ARGS=findproject:linuxha

Prior to installation of any version of Linuxha.net it is recommended that the latest news items
are read to check for any new releases notes that may impact installation or use of the software.

1.2 Document Organisation
This reference is broken down into four main parts:

Part 1 – Introduction to Data Replication Clustering – gives an overview of the design
considerations that Linuxha.net uses and attempts to describe some of the problems a
replicated data cluster some overcome.

Part 2 – Building a sample cluster – this describes the installation and configuration of the
software providing a cluster - including installation of a sample application.

Part 3 – Day-to-day cluster administration – The previous section contains probably almost all
the information needed to manage the cluster assuming everything is going well. This section
goes into more details of long term cluster management - such as adding, changing or removing
applications - even when the cluster remains up and running.

Part 4 - Trouble shooting guide - A section dedicated to describing common failure scenarios
along with information on how Linuxha.net handles these situations and details of any manual
intervention that may be required to complete

Part 5 – Technical information for the curious – This section contains copious technical details
describing the workings of the cluster software. Only relevant to those who intend to customise
the software or contribute to the project.

Page 7

http://www.linuxha.net//index.pl?ARGS=findproject:linuxha

 Linuxha.net Administrator’s Reference

1.3 Intended Audience
This document is intended to be read by those responsible for either implementing a new
Linuxha.net cluster, performing day-to-day cluster management, or anyone attempting to
recover from a failure scenario which is not dealt with automatically.

The text does have some expectations of the reader; namely a reasonable experience of Linux
or other UNIX environment; comfort with the command line interface, a basic knowledge of XML
and use of a standard editor (such as “vi”) to alter configuration files.

Since Linuxha.net makes use of the Linux Logical Volume Manager it is recommended that the
reader become familiar with the basic concepts and commands before attempting to use this
software.

1.4 Conventions
Any commands that can be entered on the command line will appear in courier font with a
light grey background, for example:

clstat

Any commands that must be entered as the “root” user will be prefixed with a “#” symbol, whilst
commands entered by other users are prefixed with “$”, for example:

$ ls

Any output is typically shown in the same format, and may immediately follow the command or
appear after an explanation - though does not include the background colour, for example:

clstat
Cluster: cluster2 - DOWN

Any points that is of particular interest it will be shown as a note, highlighted as follows:

This is a important consideration of which you should be aware.

If a point is considered critically important it will appear as follows:

If you ignore this you might loose all you data.

Finally if a particular point is generally considered useful, but not highly critical it will be denoted
as follows:

This is a useful tip which might make your Linuxha.net experience more manageable.

1.5 Request for Feedback
This documentation and the associated software is available for free via the GNU GPL
(software) or Creative Commons (Documentation) licenses. However it would be a great benefit
if anyone is able to send details of their experiences (good or bad) to the following address:

simon.edwards@linuxha.net

All feedback is confidential and will be used purely to help improve the documentation and
software.

1.6 Software Versions Covered
This document covers any “pre-release” version of the software from 0.9.0 through to 0.9.9.
When a 1.0.0 release is made available this document will be updated accordingly - though it is

Page 8

mailto:simon.edwards@linuxha.net

 Linuxha.net Administrator’s Reference

likely that the changes will be only for fixes and new material since no new “features” are being
added between the versions 0.9.0 and 1.0.0.

1.7 Understanding Linuxha.net Releases
Due to the limit resources it is not possible to test every release of Linuxha.net against against
every supported configuration prior to the release of 1.0.0. However certain releases are tested
more thoroughly than others:

x.x.0 The “.0” releases, such as 0.9.0 tend to be tested the most. Although this does not
guarantee that all functionality across all operating system versions has been tested, it
does mean that such versions are less likely to suffer from unknown bugs or lack of
functionality.

x.x.n These “minor” releases are used to fix bugs or problems either currently outstanding from
prior to the last major release, or newly found problems with the last major release. The
intention is to expose this new functionality to environments for as much testing as
possible - and hence installation of such releases should be performed with caution.

Once 1.0.0 is released the mechanism will change:

1.0.x These releases will be bug-fixed only. Each release will under go a complete end-to-end
test to ensure no new bugs are introduced.

1.1.x A development tree - will include new features and also bug fixes from the 1.0.x releases
when appropriate. None of the 1.2.x should be considered for production environments.

1.2.x Stable releases taken from the 1.1.x code-base. Each will be tested using the end-to-end
test suite that will be deemed appropriate for the 1.2.x releases.

Hence 1.1.x and 1.2.x will share the same source code, whilst 1.0.x will continue to use the
original source code repository which is used for this document.

It is intended that the 1.0.x releases are backwardly compatible with 0.9.0 and above, whilst this
will not be true for the 1.1.x and 1.2.x releases.

Page 9

 Linuxha.net Administrator’s Reference

Part I:

An introduction to Replicated Data Clustering

Page 10

 Linuxha.net Administrator’s Reference

2 Principals of High Availability
Before it is possible to design a high availability solution for any application some of the basic
principals involved in high availability must be understood. Given the simplistic goal of the
Linuxha.net product, the two main concepts of concern are “redundancy” and “availability”.
However typically highly available environments are client/server architectures, where the
“server” side is that which is highly available.

For example consider a highly available Samba application - Linuxha.net could be used to
ensure the server component was made available, but does nothing to guarantee the other
infrastructure components such as the clients, networks, or shared printers.

2.1 Redundancy
Redundancy simply means that there should be more than one component in a system capable
of doing the same job. The list below gives you an example of typically which components are
made redundant in a highly available environment:

[1] More than one network card
[2] More than one copy of the data
[3] More than one machine
[4] More than one location
[5] More than one power source
[6] More than one network

Of course it is usually beyond most budgets to afford all these in a solution. However to build a
high availability environment at least the first three must be met. The minimum requirements for
Linuxha.net are [2] and [3], whilst it is able to improve availability as more of the conditions are
met.

From this point onwards the term “cluster” will be used to describe the collective hardware used
to create the highly available environment. A single machine is referred to interchangeably as a
“server” or “node”. The Linuxha.net software supports two “node” clusters only - though support
for 3+ nodes will be added for future releases.

2.2 Availability
A highly available system is not one without any downtime – it merely means that under most
circumstances if there is an outage the affected applications will be made available again to any
clients within a designated time period, (typically in less than 1 minute, but may be more
depending on the complexity of the application - starting Oracle’s iAS products can take many
minutes to start, for example).

Note that this means that the failure of the application is usually not transparent – the user
typically has to reconnect to the service in question, though much does depend on the
intelligence of the client/server architecture of the application in question.

Again, using Samba as an example, no reconnection will be necessary - the shares appear to
“unfreeze” once the fail-over of the application to another node is complete. Actually Linuxha.net
provides availability at several levels:

[1] Application Availability
Tools are provided to monitor that an application is running, and if not to re-start locally, or
to restart it on the other node if the software appears to fail too frequently on the current
node.

[2] Network Availability
The cluster topology contains information on various networks supported by the cluster. The
cluster is then able to monitor physical network connectivity and fail-over IP connectivity
from one network interface to another if deemed necessary. Such fail-overs are sub-second
and are usually completely transparent.

[3] Host Availability

Page 11

 Linuxha.net Administrator’s Reference

If a node appears to die then the software will re-start any applications that were running on
that node at the time - assuming that the remaining node was up and running of course!

2.3 Client / Server Architecture
Usually a high availability cluster consists of one or more applications acting as “services” to
clients – be it a web server, database or file server for example. The common theme here is that
there is the concept of client / server topology – so any application that can fall into such a
category could (in theory) be placed in a cluster.

The Linuxha.net cluster software covered in this reference allows one or more programs to be
made available. Each service that acts as a separate entity is known as an “application”. You
may have zero or more applications in your cluster.

Running the cluster with no applications can actually be useful - in this case the network
topology is still being monitored and thus IP fail-over when an interface problem becomes
apparent still takes place.

The cluster can be run in two different “modes” (though these are just determined by how the
administrator configures the applications and uses the commands, rather than actually being
required to configure the cluster in a different manner). These modes are:

Ø Idle Standby
In this scenario all applications started on a single server. The other server in the cluster
hosts no applications under normal circumstances - hence being classed as “idle”.

The advantage of this approach is that it is typically more straightforward to manage - it
allows the “idle” node to be easily changed without impacting any running applications.
Further since the node is typically not used it is possible to define it as a lower specification
server (less memory, CPU’s), thus reducing the overall hardware costs for the cluster.

Of course the major disadvantage of this method of working is hardware utilisation - a
server is not performing useful work (from the perspective of client software). Thus even
though the standby machine might have cost less, it is still essentially providing a low
Return on Investment.

Idle standby is implicit if only a single application is being hosted by the cluster.

Ø Active Standby
In this scenario the clusters hosts two or more applications. Under normal operating
conditions both servers run clustered applications, (though not the same applications).

Since both servers are running applications best use of the available hardware is being
made. Of course this does make administration potentially more complex since the
administrator can not assume where applications reside. For example if the administrator
uses a script to pass information from the web server to the database server it is not
possible to assume that they are running on the same server.

Because under these operating conditions both servers are critical physical loss of a server
will result in some applications being migrated. With an idle standby there is only a 50%
chance of the loss of the server causing any problems for client access!

Hence the approach taken is entirely determined by the requirements for each installation. Since
the parameters of the running cluster and applications can be changed at any time as conditions
dictate.

Page 12

 Linuxha.net Administrator’s Reference

2.4 Linuxha.net Resource Limits
Many clustered environments typically limit certain resources. With Linuxha.net care has been
taken to remove such limits where possible. The following table might be useful when comparing
clustering products, commercial or otherwise.

Resource Maximum Supported
Nodes 21

Applications Unlimited
File Systems 256 - 2.4 Kernels

Unlimited2 - 2.6 Kernels
File System Size 2 Tb
Networks Unlimited
Cards per Network Unlimited
IP’s per Network Unlimited
IP’s per Application Unlimited
Networks per Application Unlimited

Notes from the above table:

1. Later versions of the software may include support for more nodes, but any application will
still only be able to fail-over to one other designated node.

2. The number of file systems is determined by the available number of minor numbers for a
device. For Linux 2.6 based kernels this means 65536 - which in terms of a number of file
systems must be considered “unlimited”.

Page 13

 Linuxha.net Administrator’s Reference

3 Managing Data Redundancy
Linuxha.net uses a special kernel device driver called “DRBD” (see http://www.drbd.org for
details). This driver allows data to be replicated to a remote server over a standard IP
connection. Thus the data that the cluster uses is always local to the node using a particular
application, with any changes being sent to the remote node for replication.

Data Availability is usually the keystone to making an application highly available. Few
applications do not have any data (whether state, reference or log files), thus the method
chosen to ensure the data is available to both nodes is critically important.

To understand the disadvantages and advantages of a replicated data approach it is useful to
understand the alternative approach which most commercial clustering software makes use of -
Shared Storage Architectures.

3.1 Shared Storage Architecture
This is the topology used by most commercially available clustering software - definitely all that
allow more than two nodes (from my experience). In this case the storage used for the
application data is stored on a device that is independent of either of the hosts in the cluster.
The diagram below uses a typical topology used commercially today for many clusters:

Figure 1: Shared
Storage

Architecture

The advantage of this architecture is that is relatively simple to configure and manage – there is
only a single “copy” of the data, so thus there can only be one view of the data from which ever
node you are running.

Since there is only a single data copy the number of nodes that can be attached to the data can
be easily increased without significant complexity.

The major disadvantage of this approach is that the storage that is shared is in most cases likely
to be hosted in a single cabinet, meaning loss of the power supply to the cabinet, or loss of the
cabinet would result in the cluster becoming unavailable.

Of course this single point of failure (single data copy) can be overcome with mirroring of some
type. Typical commercial environments are likely to use host-based mirrored or even dedicated
SAN hardware related infrastructure - such as EMC’s SRDF.

One other disadvantage of a shared storage architecture is cost - currently only SCSI or Fibre-
channel based storage can be connected to multiple hosts - and such disks cost at least twice
as much as existing PATA or SATA-based solutions.

Page 14

System 1 System 2

disk

Network Network

http://www.drbd.org/

 Linuxha.net Administrator’s Reference

3.2 Replicated Storage Architecture
The other typical choice for clusters is to use per-node local data copies - this topology is often
referred to as a “replicated storage” topology. The diagram below demonstrates such an
environment.

Figure 2: Replicated Storage Architecture

In this instance both machines keep a “local” copy of the application data, and uses this copy
when the node is serving the application to clients. This immediately means that the cluster can
only run an application on a single node at any one time - which is the solution typically required
for clustering generic applications.

In this scenario when an application is using “Server A” is serving the application to clients it will
also be sending any updates for the file systems used for that Application to “Server B”.

Hence in some respects even when running the application as an “idle standby” configuration
the standby node is still performing work - ensuring its copy of the data remains up to date.

However this is an important distinction with replicated solutions – even if a node is not running
an application it is not truly idle since it will be performing read/write activities for the application
to. This must be taken into account when taking an “idle” node out of service.

In such instances the data replication infrastructure can be very flexible. Consider that the “local”
storage does not necessarily need to be SCSI, PATA or SATA storage - it could be a Fibre
Channel or iSCSI-based.

The key for a replicated storage solution obviously is a reliable connection to host the data to
replicate. Linuxha.net supports replication over Ethernet hardware only - though the bandwidth
should be carefully considered for the expected write performance of all running applications.
The software will function using anything from 10Mb/sec half duplex through to 10Gb/sec full-
duplex without problems.

In most circumstances if the servers are in the same location a single cross-over cable
approach is possible, making a highly cost effective solution. Higher end approaches using
channel bonding of Gigabit Ethernet connections are possible, if this is required.

The cost effectiveness of typical replicated solutions is one of the main advantages of this
architecture. It is quite possible for provide 1Tb of replicated storage for a fraction of the cost of
a shared storage solution.

Page 15

Server A Server B

Disk Disk

Data Replication

Network/ Client Access

 Linuxha.net Administrator’s Reference

A further advantage is that the machines can be in different locations, offering site resilience - a
big benefit when considering disaster recovery requirements.

The major disadvantage of this approach is complexity – there are potentially two copies of the
data – and due to the lack of atomic file systems as well as two copies it can be sometimes
difficult to understand which copy is current and which is not.

Fortunately the DRBD device driver used is clever enough to transparently cope with most
scenarios automatically. For example consider adding the standby node back into the cluster
after a failure - which replicated file systems need updating? In such cases DRBD is able to
keep track of differences and only update the portions of storage that have changed - a great
benefit when replicating 100GB or more data.

Page 16

 Linuxha.net Administrator’s Reference

4 Data Replication with Linuxha.net
The primary goal of Linuxha.net is to provide an administrator the ability to build a very cost-
effective, highly available cluster - making use of data replication. This means that commodity
hardware can be used (such as PATA or SATA drives) - allowing a cluster to be built for much
less than might be possible using shared storage infrastructures.

This section now describes how the data replication is used within Linuxha.net - to provide
resilience, but also to make things easier to use and administer for the system administrator.

4.1 Choosing the Network Block Device
To provide data replication over a IP link requires the use of a “network block device” - a device
that uses the IP stack for communication to a remote service, whilst providing a standard “block”
interface to the disk interface to make use of.

At present there are three well known “block device drivers” for Linux:

Ø enbd (formally “nbd”)
This is based on the original “nbd” device driver and provides a minimum amount of
functionality. To provide replication to a remote device it is necessary to layer this device as
one side of a RAID-1 meta device, and use the RAID-1 device as storage.

This solution is known to offer good performance, but suffers from increased complexity and
lacks sophisticated change-set handling in the event of local or remote failure. This was the
original device used by earlier versions of Linuxha.net.

Ø Grbd
This device includes network block device support but is closely tied in with GFS (Global file
system). Use of this outside of GFS networks does not appear to be possible.

Ø Drbd
This is the solution used currently by Linuxha.net. It addresses the recovery and complexity
issues that plague Enbd and even provides several protocols which allow improved support
for networks with high throughputs and/or high latencies.

The protocol that Linuxha.net uses by default is the safest - attempting to guarantee is best
as possible remote data consistency. However this can be modified if necessary (though it
is not recommended).

Because of the use of the “safe” protocol (known as “protocol C” in the DRBD camp),
performance is not necessarily as good as Enbd using the same hardware and network
infrastructure.

Page 17

 Linuxha.net Administrator’s Reference

Architecture of DRBD-based replication
The diagram below shows how DRBD is used to replicate data.

Figure 3: Using “DRBD” to replicate data

In the above diagram it is expected that the application using the data replication is currently
running on “Server A”, replicating changes to “Server B”. Note:

Ø There are no explicit user-land processes running to provide what is essentially a client-
server infrastructure (where the “client” in this case is actually the server than clients using
the clustered applications connect to!).

Ø “Server A” is known as the “Primary” node - that is the DRBD device is open and in use,
whilst “Server B” is known as the “Secondary” node - it’s DRBD is not in use, just being
updated.

Ø If either one of the local or remote storage devices becomes unavailable the DRBD device
on the primary will continue to function.

Ø Duration data resynchronisation operations, (such as when a failed node rejoins the
cluster), DRBD uses the concept of a “SyncSource” and “SyncTarget”. The “SyncSource” is
the node with the up to date information, hence pushing the changed data to the
“SyncTarget”.

4.2 Using DRBD on the Command Line
The current version of Linuxha.net makes use of version 0.7.8 of DRBD. Although how this
software is used internally within the product is not necessary to know understanding the
mechanics of a DRBD device is worthwhile (your data depends on it).

The steps necessary to use this block device to mount a file system on “Server A”, are not
particularly complex (once the initial data synchronisation has been completed): Firstly o “Server
A”, run the following command:

Servera# drbdsetup /dev/drbd0 disk /dev/hda1
Servera# drbdsetup /dev/drbd0 net 175.100.0.1:9000 175.100.0.2:9000

Page 18

Server A Server B
Data Replication

Local Storage Local Storage

Network / Client Access

NBD Client NBD Server

 Linuxha.net Administrator’s Reference

The above commands device “drbd0” to use the local “/dev/hda1”, whilst the remote connection
is via “175.100.0.2” on port 9000 - (using “175.100.0.1” on port 9000) as the local TCP/IP
connection.

Now similar commands must be executed on “Server B”:

Serverb# drbdsetup /dev/drbd0 disk /dev/hdb2
Serverb# drbdsetup /dev/drbd0 net 175.100.0.2:9000 175.100.0.1:9000

These commands are the same as “Server A”, though in this instance a different disk device is
being used. At this point the devices will communicate, connect, and resynchronized
automatically if necessary.

Before a device can be used, however it must be made “primary”. To do this the following
command should be run on “Server A”:

Servera# drbdsetup /dev/drbd0 primary

At this point the “/dev/drbd0” can be used as a normal block device on “Server A”, for example:

Servera# mount -t fjs /dev/drbd0 /apache

Checking Data Consistency
Currently the only method of checking the status of each used device by examining the contents
of the “/proc/drbd” file. Hence consider the following command and output:

Servera# cat /proc/drbd
version: 0.7.10 (api:77/proto:74)
SVN Revision: 1743 build by root@sl4s2, 2005-05-16 22:56:13
 0: cs:Connected st:Primary/Secondary ld:Consistent
 ns:10 nr:0 dw:10 dr:236 al:2 bm:0 lo:0 pe:0 ua:0 ap:0
 1: cs:Unconfigured
 2: cs:Unconfigured
 3: cs:Unconfigured
 4: cs:Unconfigured

The file contains very useful information, though of course it is not necessary to examine this file
manually since Linuxha.net includes tools to do so.

The output above shows a single DRBD device in use, and various status indicators for that
device. Most important are “cs” (Connection State) - which is set to “Connected”, “st” (Status) -
which is “Primary/Secondary” and “ld” (Local Disk) - set to “Consistent”. These are the values
that would appear under normal operating conditions indicating connectivity to the other node is
present, the device is open and in use, and the data is consistent.

4.3 Scenarios Requiring Resynchronisation
DRBD attempts to minimise the amount of data that requires synchronisation. Consider each of
the following scenarios:

Ø Loss of Primary
In this instance the application will fail-over and be made available from the remaining node.
When the server later rejoins the cluster DRBD will just update (on the node joining the
cluster), just those portions of disk that have been updated.

It might also be necessary to send updates from the failed node back to the live node, if
such regions have not been updated since the crash on the node now running the
application utilising the storage in question.

Ø Loss of Secondary
In this case any regions that are updated whilst the secondary is not attached to the cluster
are replicated across when it rejoins the cluster.

Ø Software Shut-down on Secondary

Page 19

 Linuxha.net Administrator’s Reference

The recovery requirements in this instance are the same as the loss of secondary - since
the primary can determine the state of the secondary when it rejoins and just replicate any
recent differences.

Ø Software Shut-down of Primary
In this case the secondary node is unable to determine the active change set that was
taking place on the primary server. Hence when the application fails-over to the secondary,
it forces that copy primary and when the original node comes back up and joins the cluster,
must force that node “secondary”. Hence in this state a full resynchronisation must take
place.

The key point is that shutting down a node running an application incorrectly is not
recommended. It is actually better to power that node off if shutting down the clustered
application cleanly is not possible.

The amount of data that must be resynchronised is highly dependent not only on the amount of
data that has changing but also on the number of extents DRDB uses for each active set. This is
currently not configurable with Linuxha.net.

4.4 File System Support
Linuxha.net does not force the administrator to use a particular file system type to be used for
the clustered storage. Of course a journalled file system is recommended since this allows
speedier recovery. Hence it is recommended that that one of the following is used:

Ø ext3
Ø jfs
Ø reiserfs
Ø xfs

The software must also be able to allow the administrator to set options that might be applicable
to their environment. For small test configurations “jfs” is the first choice since it allows very
small logical volumes, (i.e. 20Mb), where as though “reiserfs” is potentially faster, it does not
seem to work too well until the volumes are much larger – at least 50Mb in size.

Although it is possible to mix and match file systems throughout the applications being clustered
for ease of use the recommendation is to choose just one particular file system and use it
everywhere.

It should be noted that “ext3” does not offer on-line file system expansion and so from the
availability aspect this is a definitive negative point, and for this reason the author does not
recommend its use currently.

Of these file systems “xfs” differs from the other three since it is based on “extents” rather than
blocks. Although the current versions of DRBD do indeed support “xfs” there do still appear to
be some issues - so please ensure adequate testing is performed prior to using in a live cluster
if this file system is to be used.

Thus the author recommends the use of “jfs” or “reiserfs”. Both are stable, offer good recovery
times and provide on-line file system expansion1.

1 It has been noted that RedHat Enterprise Linux 4 does not support either “jfs” or “reiserfs” officially, though
packages are available they are unsupported.

Page 20

 Linuxha.net Administrator’s Reference

5 Linuxha.net Solution Architecture
This section outlines the architecture used by Linuxha.net. The major components are defined
and described, along with the files used to manage the cluster, applications are resources.

Remember that this document covers the features offered by version 0.9.0 of Linuxha.net,
However it is unlikely that any major differences will invalidate this information for the 1.0.x
releases.

5.1 Definitions of Terms
Before designing the software / cluster architecture it might be worth reiterating (and refining) a
few terms that will be used throughout the remainder of this document:

• Node – A node is a machine that is part of the cluster. In the current scope of the software
design a cluster must have two nodes, though both might not be available at any one time.
The administrator might refer to a node by name, but the underlying architecture uses IP
addresses defined in the cluster topology file in most cases, and does not rely on a single
route for inter-node communication.

• Application – This is a discrete service that the cluster provides. Each application can have
zero, one or more volume groups.

The cluster can consist of zero, one or more applications, (the maximum is not defined, but
is determined only hard machine resources). Each application can have zero, one or more
unique “application” IP address which will be present only whilst the application is running,
and be the access point for clients to access the services offered by the application. Further
IP addresses can be defined on different networks if desired.

• Volume Group – This is a collection of “logical volumes” – which are essentially block
devices which contain file systems. A volume group is a collection of such block devices that
are made available as a whole or not at all. Volume groups are provided by the “Logical
Volume Manager”. Currently there are two versions supported under Linux - both versions of
LVM are supported by Linuxha.net. Support for IBM’s EVMS is to be added for post 1.0.0
releases.

• Monitors – These are programs that check the status of various components, either of an
application (such as whether certain processes are running), or the cluster environment
(such as network status monitoring).

Most monitors are run as modules of a sub-system calls “Lems” - the Linuxha.net Event
Monitoring System. Each running application typically has a single “Lems” daemon running
making use of several monitors. These monitors can fall into either of two categories –
“system” or “application”.

The system monitors are standard monitors that are necessary to monitor the status of the
clustered environment from the perspective of this particular application. System monitors
typically monitor the IP reachability from the IP addresses for the application and importantly
the status of file system data synchronisation. The “application” monitors are typically user-
written programs or Perl modules that validate that the current application is still working
effectively or not.

• Service Addresses – As stated above an application presents itself to clients via TCP/IP
connectivity. Although some client/server architectures use broadcasts to ascertain hosts
providing a service a more common approach is to connect via a defined IP address.

Each application may define zero or more IP addresses associated with it. It is actually
possible to define multiple IP addresses either on the same network, or across multiple
networks. Multiple IP addresses on the same network are typically used for applications such
as Web servers, whilst providing addresses for multiple networks is typically used to provide
“public” and “private” IP addresses (one for client access, the other for systems
management).

Page 21

 Linuxha.net Administrator’s Reference

5.2 Application Storage Management
Although it would have been possible to deal with simple block devices without resorting to
volume manager support this was deemed unsuitable for the target environments. It is likely that
any environment where high availability was taken seriously enough to invest in two servers
would be making use of enterprise level features such as a logical volume manager (aka
“LVM”).

Hence it was decided that each application in the cluster will replicate based on the contents of
separate volume groups. There are no limits to the number of volume groups a machine may
have, and each volume group can have many file systems. The use of LVM means allows the
administrator as well as the Linuxha.net software to validate and manage the environment more
easily and is a core component of how replicated data is handled.

Since Linuxha.net product is built via the provision of duplicated synchronised data resources
the software includes checks to ensure that each volume group that is configured as part of an
application will is defined as identical on both nodes. Obviously if this is not the cause the
cluster is unlikely to work and the administration of the data sources will become overly
complex. Such facilities ensure that once the volume groups have been defined on both nodes if
necessary the software will be able to create and/or validate the volume group configuration for
each application created.

As previously stated both LVM version 1 and LVM version 2 are fully supported. If there was a
particular reason to make use of different versions on different hosts that is also supported –
though obviously it would make administration more complex and hence it not recommended.

Some future release following 1.0.0 will include support for EVMS as well. Support for the
Veritas Volume Manager is currently unlikely unless sponsorship of the license costs of the
software can be met.

5.3 Managing Cluster Consistency Status Information
One of the most important aspects of the cluster administration is ensuring that information
regarding data synchronisation is kept and managed very strictly. Early versions of the software
attempted to handle much of this information explicitly. However with the use of DRBD as the
replicated network block device, this facility is now mostly implicit - each DRBD device uses
local meta-data to keep detailed state information regarding data consistancy.

However some information most be retained for the cluster infrastructure as a whole, and hence
the following directory will be created on both hosts to store such information:

/etc/cluster

This directory contains information on the application configurations, cluster topology, resource
allocations, and current application state information.

Some of the more interesting directories stored here are:

/etc/cluster/.resources

This directory contains several sub-directories that indicate the resources that are in use on this
particular node. Sub-directories such as “drbd”, “ports” and “fsmap” can be found here (these
are explained later in this reference).

/etc/cluster/application

Each application is allocated a separate directory in which the status, resources and definition of
the application are kept.

Of course, since no storage is physically shared these directories are created on both nodes. In
most cases the administrator only needs to enter configuration information on a single node -

Page 22

 Linuxha.net Administrator’s Reference

the Linuxha.net software will copy any data that needs duplication as part of any cluster or
application build process.

Apart from using the meta-data that exists for each DRBD device whenever an application is
started on a node, the following file is created:

/etc/cluster/application/TIME

This contains the “UNIXTIME” (number of seconds since 00:00 01/01/1970) when this particular
package last ran on this machine. This information is used when the contents of the status
directory differs on each node. In this particular case the node which has the most recent time
will be taken to have been run last and thus have the most up to date information.

5.3.1 Handling Specific Limitations

The approach taken for handling cluster failure scenarios works well when handling single
points of failure - which is all most cluster software (commercial or otherwise) will aim to do.
When one failure is followed by another before the first is resolved then manual intervention by
the administrator will be required in many cases.

For example, if a node failed and then the remaining node failed without the first node being
brought back in and any data synchronisation being completed then it will be the responsibility
of the administrator to ensure that the applications are restarted on the 2nd node to ensure data
synchronisation back to the first node can complete.

Note that failure of both nodes simultaneously, (i.e. if sharing the same power source and it
fails), is not a problem unless data synchronisation has not been completed at that point (for
example due to a previous error). In such cases, DRBD should recover data using the contents
of the Meta-data for each replicated file system.

To help in such scenarios the cluster status reporting tool (“clstat”) includes a report to indicate
the times each application has been used on both nodes, so they can be started accordingly.

5.4 Cluster Status Daemon
It is important that cluster status configuration information is passed between both nodes if they
running and able to communicate. Although the software does make use of “ssh”, much of the
time a more efficient method is to keep the information information available at all times and
make it available via a daemon.

Hence although it is actually possible to force an application to start without such status
daemons running, this approach should be used for emergencies only. Otherwise the start-up of
an application will query a daemon to ascertain the current status of the application in question
using such information to decide what steps should be taken.

When the two nodes start cluster status daemons around the same time they are said to be
“forming” a cluster. If a cluster is already running, but on a single node, the remaining node is
able to “join” the cluster at a later time.

The process of joining a cluster or forming it follows a set pattern of communication between the
nodes to ascertain the status of each machine and to pass any current information between
themselves that they deem relevant to the current status of the cluster. Once running in a steady
state the daemons will be responsible for managing the status of the node – such as logging
details, starting and stopping applications, saving state, and communicating with each other to
check that they each are alive and functioning.

Since the status daemons communicate with messages that might actually cause application to
stop or fail-over security is a key consideration. Hence the communication amongst the
daemons will make use of Blowfish encrypted traffic – the password for the encryption will be
kept as part of the cluster configuration with only root allowed to view such a file.

Page 23

 Linuxha.net Administrator’s Reference

When the administrator starts the cluster service in “forming” mode the daemon will attempt to
contact the other machine and if it can not be found it will occasionally probe for it up to a
defined time limit. If it gets no response and has not been “forced” then it will abort the start-up
of the cluster.

The actual mechanisms of the communication that the daemons use, both during the formation
and during steady state operations can be found in the technical section of this publication - see
section 5.

Finally it should be stated that although the cluster daemons are key to the functioning of the
cluster the environment has been configured in such a way that if the cluster daemon fails (for
example due to a software problem), it should be possible to re-start it without impacting
application availability. Various failure scenarios (including loss of the cluster daemon) are dealt
with in later sections of this document.

5.5 Cluster Lock Daemon
This daemon is responsible for handing out locks to various Linuxha.net processes. The locking
is optional (i.e. the cluster will function if the lock daemon dies), but without it it is not possible to
ensure serialised access to cluster resources.

These locks are only really necessary if multiple applications are running in the cluster, but it is
recommended that it always runs, no matter the number of applications.

As with the main cluster status daemon the administrator is able to communicate and influence
the functionality of the daemon via a simple command line utility.

5.6 Cluster Network Daemon
The cluster network daemon monitors the networking environment of a node. The work it
undertakes is determined by the topology of the node on which it is running. The daemon will
monitor the physical link status of all networks defined in the topology, typically 5 times a
second, and on failure take appropriate steps.

Again, this daemon is optional. Stopping it, or not running it will not affect running applications,
or even from new applications from starting - it simply means that network card failures will not
be handled by the cluster.

When this daemon is running the loss of a physical connection on a card in the topology which
supports physical link checking will result in either of the following actions taking place:

Ø IP Address Fail-over
If the specified network card is part of a network on this node that consists of more than a
single network card then the IP addresses currently associated with this card are failed-over
to another card.

When more than two cards are available in a defined network the card chosen is one that
either has never been failed over to before, or was used the longest time ago.

This fail-over will affect all IP addresses associated with the card - both any IP addresses
statically assigned or configured as part of any application currently running in this node.

Ø Application Fail-over
If a card failure is determined to be occuring too frequently for a given network2 or a network
only consists of a single network card, then it is possible that certain running applications
will be migrated to the other node in the cluster.

Applications that are considered as suitable for this migration are defined as;

1. those which define IP addresses on this network.

2 Too frequently is determined by the minimum time period between attempts to re-use the same card in the network.

Page 24

 Linuxha.net Administrator’s Reference

2. those which are known to have a valid copy of data on the remaining node

3. the other node in the application is up and running as part of the cluster

Ø No Action
If the node is not running any applications or no applications rely on this interface and no
alternative card is present or valid, then the failure will be logged, monitoring for this network
stopped and no other action takes place.

If such cases it is the responsibility of the administrator the turn on monitoring for this
interface at a later date once any problem has been found and resolved.

Details describing how the physical link status is checked can be found in later sections of this
document.

Page 25

 Linuxha.net Administrator’s Reference

5.7 Application Monitoring with “Lems”
When an application is started on a node a daemon known as “Lems” is started with the sole
aim of monitoring the status of that application. Unlike some other cluster software products
available Linuxha.net does not depend on a single cluster-wide daemon monitoring status of all
applications, but instead uses one per (running) application.

The monitoring offered by the “Lems” daemon can be classified as belonging to one of the
following categories:

• System
• Application

System monitors are those that are already provided as part of the base Linuxha.net product
and should be running for every application to ensure that the cluster fnuctions in the way
expected.

However it is possible to turn off or even remove system monitors, depending on the individual
requirements of the the application. The next section describes in outline each of the available
monitors, indicating which can be considered as “optional”.

Application monitors are optional – it is possible to run an application without any application
monitors, though usually at least one is made use of. It is very possible that a custom monitor
might be required for a particular application and the interface to add such monitors is quite
straightforward.

5.7.1 System Monitors

A section later in this document describes the “Lems” software is considerable detail, however
in practise these monitors will perform the following roles (on a per-application basis):

• Checking and managing data synchronisation
• Checking IP services (if possible)
• Checking network link connectivity (if possible)
• Handling IP Address migration (when necessary)
• Flag Checking

Each monitor typically runs at different intervals or when triggered by another monitor – for
example the “Ip Address migration” monitor only runs when the Link or IP address modules
notice a problem.

5.7.2 Application Monitors

These are monitors that are optional and typically may differ on a per-application basis.
Currently there is three such monitor already supplied with Linuxha.net– though typically only
the first is required for most environments:

Ø Process Monitor
This monitor is used to check to see whether a certain process is running, and if not run a
command to restart it. A certain number of restarts are allowed in a set period of time after
which typically a fail-over of the package to the other node is undertaken.

The monitor provided is driven by a configuration file that the user must create and
obviously entirely depends on the application being monitored.

From experience it has been found that the abilities of the standard process monitor should
meet most requirements for simple application process monitoring and restarting. One
limitation it does have is that it does not handle any dependencies between the application
components – for example if you have a package which consists of a database and an
application, you may wish to restart the the application if the database fails, but if the

Page 26

 Linuxha.net Administrator’s Reference

application fails the database does not need to be restarted. In such scenarios the author of
the process monitor configuration file must take care of the dependencies – the software is
currently unaware of them.

Ø File System Capacity Monitor
This monitor will check the available free disk space in one or more file systems and when it
drops below a certain threshold it will return a known error code. This is useful for failing
over applications if they rely on certain local free resources, (such as space in “/tmp”).

Ø Swap Space Free Monitor
This checks the available disk space and if it drops below the specified threshold it will
again respond with an error code. This can be used to fail-over or shut-down applications to
ensure other applications running on the same server continue to function without risking
out-of-memory conditions.

Since the “Lems” daemon for a running application is quite critical the main cluster daemon
actually scans for a running daemon when an application is live, and if not found will start one.

5.8 Cluster Utilities
Often people have the perception that clusters are complex, and although in some instances
this is undoubtedly true, the aim of Linuxha.net is to make cluster configuration and
management as simple as possible. Experience has shown that to make a cluster manageable it
must be straightforward to build initially, change later and report on whilst running. Further since
this is high availability software as much work as possible should be able to be performed
without downtime required for either the applications in question, or worst case, the complete
cluster software.

As of version 1.0.0 a complete set of tools and utilities are provided allowing the cluster to built
and configured, the applications built and cluster status to be ascertained. All daemons provide
logging when required, and the utilities are written to be usable in various cluster operating
conditions.

For example the tools to “build” the cluster definition can be used both initially and when the
cluster is actually running. In the latter case certain changes are communicated to the cluster
daemons which are dynamically updated.

For the utilities to work the nodes must support “Ssh” services without recourse to a password
prompt. Indeed “Ssh” configuration between the nodes is a key requirement, and information on
how to configure “Ssh” can be found starting on page .

5.9 Third Party Software
As with most software installations Linuxha.net has some dependencies. However the majority
of these dependencies are very common, and are likely to be already in place in most
environments, whilst the less common components (certain Perl modules) are bundled with the
core product and will be compiled and installed automatically if required.

The largest dependencies not covered by the standard package are;

Ø Perl
Ø Kernel Header Files
Ø Gcc
Ø Parser tools (Bison/Flex)

Most modern environments have these installed by default. Without them the installation will fail,
(the reasons will be found in the post installation log file).

Page 27

 Linuxha.net Administrator’s Reference

Part II:

Software Installation and
Build of a Sample Cluster

Page 28

 Linuxha.net Administrator’s Reference

6 Installing Linuxha.net

6.1 Hardware requirements
Prior to installing the necessary software there are some basic points that should be considered
before a cluster can actually be built. These considerations hold true whether building a virtual
machine environment, (for example using “VmWare”), or a cluster consisting of two different
physical machines.

• IP Connectivity
The environment must be configured to ensure that at least one, (ideally two or more)
network interfaces are available on each server. Each should be able to communicate with a
similar interface on the other machine. In theory it is possible to have different network
topologies on both servers, but in practise this is not recommended since it increases
complexity.

• Network Throughput
Given that the basis of the clustered storage is provided by an IP-based replication scheme it
is important that the performance offered by the network used for this traffic exceeds the
expected throughput. If this is not the case this network link can become a bottleneck. For
larger applications cheaper Gigabit Ethernet cards are recommended – 32bit versions to fit in
cheaper hardware are now less than £30 (about $50 US) – and offer at least 3 times the
throughput of 100Mbit/cards.

6.2 Typical Hardware Configurations
Through out this document various configurations will be used to describe the software
functionality. This section aims to provide some variations on the types of hardware
configurations that the administrator might consider - all of which should be determined by the
requirements of the application to host, not the Linuxha.net software itself.

It should be noted that this section gives only some of the possible permutations. If the reader
has any questions regarding the suitability of a configuration then please contact the author
using the email address given at the start of this document.

Page 29

 Linuxha.net Administrator’s Reference

6.2.1 Configuration 1 - No redundancy

This is the simplest configuration and is although offers redundant servers, is prone to several
problems as described below.

Problems:
(1) No network redundancy - loss of a single network card will result in a complete fail-over of

any applications on the affected node.
(2) Risk of excessive “network partitioning”. Network partitioning should be avoided at all costs.

This term refers to the situation when the two nodes are unable to communicate - the
software then has to decide whether the other node has failed, or the network only. With only
a single network connection, even if using multiple cards, it is not possible to distinguish
which has occurred.

(3) Sharing the data synchronisation traffic with client-server traffic is not recommended, since
one might impede the performance of the other.

Point 2 above is a risk, since if the network condition is resolved the administrator might be
faced with two servers attempting to run an application / using an IP address, which is obviously
disastrous. The Linuxha.net has an inbuilt ability to recognise this situation if both nodes can
communicate at a later date, but any occurrence must be considered to be very bad.

Note that “handling” the problem of both nodes running the same package simultaneously is
handled by killing off a node immediately. This is not a suitable but an immediate software reset.

For the above reasons using this cluster topology is strongly discouraged. Indeed given the cost
of two servers, an additional network card each to define an alternative communication channel
should not be beyond the budget of any hardware solution.

Page 30

servera serverb

router a

client 1 client 2 client 3

eth0 eth0

public network

 Linuxha.net Administrator’s Reference

6.2.2 Configuration 2 - Basic network redundancy

The least level of network redundancy is offered by the following type of solution.

In this configuration the disk synchronisation traffic stills has no redundancy, but at least the
nodes are able to communicate across two networks, meaning that loss of a single card, or
even router, will not result in a “partitioned network” scenario - even if it does mean that one or
more applications may need to fail-over.

In such configurations loss of “eth1” will lose the data synchronisation path, leading to stale
remote copies, but the application will not fail. Loss of “eth0” would result in all client traffic being
unable to communicate (each network must use unique cards and reside on different subnets),
thus requiring any applications presenting an IP address on this network to be failed over to the
other node.

Page 31

servera serverb

router a

router b

client 1 client 2 client 3

eth0 eth0

eth1 eth1

public network

enbd enbd

 Linuxha.net Administrator’s Reference

6.2.3 Configuration 3 - Local Storage Redundancy

In this configuration not only are there multiple network paths, but also mirrored storage on each
server. This storage is typically via hardware or software RAID. Either the traditional “md” device
driver or the newer “device mapper” should work to provide software RAID for Linuxha.net
without issue.

Obviously in such a scenario the solution should be more redundant again to hardware failures.
Minimising the number of types a “hardware-failure” scenario occurs reduces the number of
instances were a full data resynchronisation will be necessary.

However the above application still only offers “eth1” for application IP traffic, meaning failure of
a single network card could result in application fail-over being required.

6.2.4 Configuration 4 - Complete network redundancy (Multi-pathing)

The following diagram show this network topology. Of course it could be combined with the
hardware or software RAID solution just shown.

Page 32

servera serverb

router a

router b

client 1 client 2 client 3

eth0 eth0

eth1 eth1

eth2 eth2

public network

router c

servera serverb

router a

router b

client 1 client 2 client 3

eth1 eth1

eth2 eth2

public network

drbd drbd

Disk 1

Disk 2

Disk 1

Disk 2

 Linuxha.net Administrator’s Reference

In this configuration the following roles are given to each interface:

eth0 Connected to the “public” network only - by default clients will communicate via the IP
addresses associated with this node.

eth1 This is part of the same “public” network but under normal circumstances does not have
any IP addresses associated). If “eth0” fails it will assume all the IP addresses for that
interface on the node in question - hopefully without disruption to existing client access.

eth2 Dedicated to DRBD traffic - in fact could be a simple point-to-point link (via cross-over
cable), rather than a routed network.

The following important points regarding this configuration should be noted:

(1) By only providing a single network card in the network used for “DRDB” traffic loss of a card
(on either host) will result in stale remote data copies. Despite this such a topology is
commonly used.

(2) By providing “eth1” as a fail-over card for the public network, the loss of “eth0” will not
require any applications to fail-over to the alternative node. Instead the cluster network
daemon will make the IP addresses quickly available on “eth1” rather than “eth0”.

6.2.5 Configuration 5 - Multiple Public Networks

In this configuration applications may define IP addresses that exist on two different networks
(for example for local and remote access in a cross-campus configuration).

In the above configuration note the following points:

(1) Two interfaces have been defined for each of the public networks, two networks for public IP
addresses, though in the above example only a single card “eth0” has been allocated for
DRBD network traffic - an additional card could add redundancy.

(2) 5 network cards is a configuration that most lower-end servers will not be able to
accommodate (lack of physical PCI slots).

(3) The network monitoring software does not differentiate between any network - if it is defined
in the cluster topology then it will be monitored. Of course the administrator can manually
turn off and on monitoring of individual networks for each host from the command line if
necessary.

Page 33

servera serverb

router a

router b

client 1 client 2 client 3

eth0 eth0

eth1 eth1

eth2 eth2

public network

router c

eth3 eth3

eth4eth4

 Linuxha.net Administrator’s Reference

Older versions of Linuxha.net supported bonding configurations explicitly. Currently that is not
the case (since IP fail-over is much improved since earlier releases.) Bonding support has not
yet been tested either for public or private network connections and so is not a currently
supported option.

6.2.6 Specific Hardware Concerns

It has recently come to light that certain hardware RAID controllers can suffer from very poor
performance when using DRBD. At the moment this appears related to specifed controllers
manufactured by “3ware”.

Hence if the hardware for a production cluster is not already in place it is always worth querying
the DRBD mailing list (after scanning previous entries) to ascertain whether the hardware in
question will indeed be suitable.

Details of gaining access to the mailing list (“drbd-user”) can be found at the following URL:

http://lists.linbit.com

6.2.7 Hardware Configuration Conclusions

Although the number of supported configurations is substantial, the following points should be
considered when deciding any solution:

• Locally mirrored storage is highly desirable. Whether this is RAID 1 or RAID 5 does not
matter - just the redundancy offered by not loosing a server from a single disk failure. Further
it does not matter whether this is software or hardware RAID.

• Servers should be in different locations - that is an ideal - but one of the key advantages of
offering a replicated storage solution over TCP/IP is that the servers can be any distance
apart, as long as a suitable level of bandwidth for the solution is available.

• Servers should be on different power supplies, or at least UPS protected. Otherwise both
servers are at risk to a shared single point of failure. Use of DRBD means that a full
resynchronisation would not be necessary for recovery, but still not a desirable situation to
be in.

• DRBD does not support built-in diverse routing of replication data. However since the
network cluster daemon can be used for IP fail-over for the replication network, an alternative
route (and routes!) should be seriously considered for production configurations.

• Multiple interfaces for client access should really be considered mandatory.
• Separation of DRBD replication data and client/server information transfer is recommended if

you have a high enough number of interfaces. Alternatively ensure Gigabit interfaces are
used throughout the solution.

• Bonding of interfaces is not currently supported - though support may be introduced at some
point in the future.

• If possible scan the “drbd-user” mailing list before purchasing any hardware - especially
since it has been shown certain RAID controllers can suffer from very poor performance
when using DRBD 0.7.8 and although Linuxha.net now makes use of 0.7.10 some
uncertainty still remains regarding this point.

Page 34

http://lists.linbit.com/

 Linuxha.net Administrator’s Reference

6.3 Environment Configuration
If an existing version of Linuxha.net is currently installed on the cluster then please pay attention
to the information given on page .

For the cluster software to work both machines in the cluster must have compatible versions of
the Secure Shell installed and the Secure Shell Daemon must be running, or be made available
for the “Internet Super Server” (either “inetd” or “xinetd” depending on your distribution).

The Secure shell must be configured to ensure that root equivalence to both the remote
machine and itself are available on all IP addresses defined for both machines. Further this
equivalence must not require a pass phase to be entered.

For information on how to configure SSH to function in this manner, please see “Appendix C:
Setting up SSH”, starting on page .

The Linuxha.net package when installed requires that the following software is also available:

Ø Perl
Ø Bison
Ø Flex
Ø Gcc (and suitable tool chain)

If any of the above are not installed the post installation will fail and the software will not be
usable. In such cases re-installation of the software can be attempted once the missing software
has been installed.

More details on the exact software requirements can be found in the next section.

Prior to version 1.0.0 the software is available only in the “Tarp” package format. How such
packages can be installed is discussed later in this section. For version 1.0.0 and above the
following package formats should be available:

Ø Tarp - generic package that can be used on any Linux distribution with minimum
dependencies.

Ø RPM - native package format that can eb used for RPM-based distributions, such as
Fedora, RHEL and Mandrake.

Ø Autopackage - generic package format designed to supplied the native package format in
use on any particular distribution.

Page 35

 Linuxha.net Administrator’s Reference

6.4 Kernel Configuration
Linuxha.net software has been designed to function on all modern Linux kernels - from 2.4.10
through to 2.6.11.

Currently the version of DRBD used for Linuxha.net is known to be compatible with the very
latest kernels (up to and including 2.6.11).

The “LVM” functionality must either be installed as a part of the kernel or installed as a module
when the server boots. If you are using a distribution such as “Slackware” the following entry in
“/etc/rc.d/rc.local” would suffice:

/sbin/modprobe lvm-mod

“Linuxha” supports both versions of LVM that are available for Linux (version 1 and 2). Support
for EVMS is not currently available, but is planned following 1.0.0.

The Linuxha.net software probes for the current support of LVM when an attempt to build a
cluster is made - and will produce a suitable error if support is not available. most modern
distributions require no alteration or special steps to ensure such support is available.

If software RAID support is required to locally mirror storage then support for the required RAID
device driver is required (typically known as “md” - though the Linux 2.6 device mapper may
also function in this manner).

6.5 Prerequisite Software
Almost all of the code that comprises of the main Linuxha.net package is written in Perl. Thus
the first requirement is to have a version of Perl which has been tested as compatible. Currently
it is recommended that either of the following versions be used, (which are those for which it has
currently been tested):

Ø 5.6.1 or above
Ø 5.8.0 or above

Testing on the vanilla version of 5.8.0 has revealed that setting “$0” does not change the text
associated with the process name and arguments – this is a requirement of Linuxha.net.
Although a work-around is now built in later versions of 5.8 are recommended.

Note that some distributions supply patched versions - for example Redhat Enterprise 3
supplies version 5.8.0, but does not suffer from the above problem.

Please note that the current release of Linuxha.net does not make use of “ithreads” – the current
implementation of threads in Perl was found not to improve efficiency.

The Linuxha.net software is available in the generic “Tarp” format,an RPM package or an
“Autopackage” package, with other formats being considered for future versions. If the
administrator wishes to make use of “Tarp” packages follow the instructions in the next section.

6.5.1 Installing Tarp Package Management Software

To make use of such packages the administrator must first install “Tarp”. For a recent download
of the tool set, and Installation instructions please see the project's home page:

http://www.linuxha.net/index.pl?ARGS=findproject:tarp

Please note that this software requires the use of the Korn shell or “zsh” running as korn. If the
target machines do not currently have a shell called:

/usr/bin/ksh

Page 36

http://www.linuxha.net/index.pl?ARGS=findproject:tarp

 Linuxha.net Administrator’s Reference

then check to see if either “/bin/ksh” or “/bin/zsh” exists, and if so create a link - for example if
“/bin/ksh” is available:

ln -s /bin/ksh /usr/bin/ksh

Since the standard “KornShell” (not the earlier “ksh”) is now available under an open license this
is now the recommended software to use. Information and downloads of this package (if not
supplied by your vendor) can be accessed here:

http://www.kornshell.com

Once the shell has been set up to install the Tarp package, perform the following steps – in this
instance using version 1.3.3 which has been downloaded with the following full pathname:

/tmp/tarp,1-3-3.tarp.gz

Firstly make a sub-directory and change to it:

mkdir /tmp/install
cd /tmp/install

Now extract the files from the archive available in the parent directory:

tar xvzf ../tarp,1-3-3.tarp.gz

Now the local copy of the “tpinstall” command can actually be used to install the “Tarp” package
itself. This is done using the following command:

usr/local/bin/tpinstall -d $PWD/.. -i -p tarp -v

This should produce output similar to the following:

MSG : Package database directory: /var/adm/tarpdb
MSG : Installing from file tarp,1-3-3.tarp.gz
MSG : Using temporary directory /var/adm/tarpdb/tpinstall-682
MSG : No dependencies required for package.
MSG : Number of dependencies to install: 0
MSG : Beginning package extract to /var/adm/tarpdb/tpinstall-682...
MSG : Package extraction completed successfully.
MSG : Saving files that will be overwritten...
MSG : No files required saving.
MSG : Installing package files...
MSG : Files installed: 14
MSG : Setting Correct package permissions + ownerships...
MSG : Removing spooled package files...
MSG : Package tarp installed successfully.
MSG : Package tarp successfully committed.
MSG : Cleaning up directory /var/adm/tarpdb/tpinstall-682

Once this step has been performed on both machines, please ensure that the PATH variable
includes the directory “/usr/local/bin” directory – this should be added to the root user's profile if
necessary before continuing.

To check that the software has been successfully installed run the following command:

tplist

This should produce output similar to:

Package Version Status Description
================== ========== ========== ===================================
tarp 1.3.3 Committed Simplified package manager

The manual pages for the packaging programs are installed into the following directory:

/usr/share/man/man1m

Page 37

http://www.kornshell.com/

 Linuxha.net Administrator’s Reference

Some Linux distributions do not include the “m” section by default, and if this is the case please
update the following file:

/usr/share/misc/man.conf

Ensure that the directive “MANSECT” is updated to include the “m” section, for example:

MANSECT 1:8:2:3:4:5:6:7:9:tcl:n:l:m:p:o

Finally the temporary directory used for the installation of the “Tarp” tools can be removed:

cd /tmp
rm -rf install

6.6 Installation of the “linuxha” package
If a previous version of the package is already installed and in use then the first step is to stop
any packages and any cluster daemons. Upgrading a running cluster is usually supported, see
later sections in this document if that approach is more suitable.

To remove a previous installation first use the following commands:

RPM based installations:

rpm -e linuxha

Tarp based installations:

tpremove -v -p linuxha

Autopackage based installations:

package remove linuxha

Now the latest version of the package should be installed, using the command appropriate for
the package type to install. All commands assume that the package is available in the local
directory.

RPM based installations:

rpm -i linuxha-1.0.0-1.i586.rpm

Tarp based installations:

tpinstall -i -p linuxha -v

Autopackage based installations:

bash ./linuxha-1.0.0.x86.package

The RPM installation is silent, whilst the Tarp package install will show something similar to the
following:

MSG : Package database directory: /var/adm/tarpdb
MSG : Installing from file linuxha,0-9-2.tarp.gz
MSG : Checking for /var/adm/tarpdb/linuxha
MSG : Using temporary directory /var/adm/tarpdb/tpinstall-11940
MSG : No dependencies required for package.
MSG : Number of dependencies to install: 0
MSG : Beginning package extract to /var/adm/tarpdb/tpinstall-11940...
MSG : Package extraction completed successfully.
MSG : Running pre-install script...
MSG : Pre-install script completed successfully.
MSG : Saving files that will be overwritten...
MSG : Files Saved: 310 (3844 Kb)
MSG : Installing package files...

Page 38

 Linuxha.net Administrator’s Reference

MSG : Files installed: 310
MSG : Setting Correct package permissions + ownerships...
MSG : Running post-install script...
MSG : Post-install script completed successfully.
MSG : Removing spooled package files...
MSG : Package linuxha installed successfully.
MSG : Pre installation script output can be found in /tmp/tpinstall-pre-linuxha-
11940.stdout
MSG : Pre installation script errors can be found in /tmp/tpinstall-pre-linuxha-
11940.stderr
MSG : Post installation script output can be found in /tmp/tpinstall-post-linuxha-
11940.stdout
MSG : Package linuxha successfully committed.
MSG : No TMP_BUNDLE_DEPOT defined (no tmp depot to remove)
MSG : Cleaning up directory /var/adm/tarpdb/tpinstall-11940

If a Standard Error file is mentioned in the tarp then please ensure the contents are checked for
potential failures. Any failure should be investigated since ignoring post-installation failures may
cause the product not to function correctly. For the Autopackage and RPM installations pre and
post installation script output can be found in obviously named files in root's home directory.

If Autopackage or RPM indicate potential errors please review the output generated to check for
errors. If either case standard output and standard error logs will be found in root's home
directory.

Once complete use the following commands to ensure that the package has been installed
successfully:

Tarp based installations:

tplist

This should now output the following:

Package Version Status Description
================== ========== ========== ===================================
linuxha 1.0.0 Committed Linux Replicated HA
tarp 1.3.1 Committed Simplified package manager

RPM based installations:

rpm -q linuxha

This should simply output the package name of the currently installed version:

linuxha-0.9.2-1

Autopackage based installations:

stuff here

Following successful installation of this package everything should now be in place ready to
start the cluster configuration and build. The process of configuring the cluster is straightforward
- assuming time is taken to read either this reference or an appropriate cluster
configuration guide document.

6.6.1 Manual Check for LVM Support

Although the build of the cluster will check for the availability of LVM on both nodes it is often
easier to resolve such problems at the earliest possible stage. Hence the administrator is
recommended to run the following command on both nodes at this point:

/sbin/cluster/utils/lvmtool –lvmtype

Page 39

 Linuxha.net Administrator’s Reference

This command will output either “1” or “2”. If no output is given LVM is not configured or
installed correctly. Please review the packages / software available for the distribution in
question and resolve before continuing.

Earlier versions of Linuxha.net required that a patched version of the LVM user-space tools be
installed to ensure compatibility with the network block device. Now that Linuxha.net uses DRBD
rather than ENBD this is no longer the case.

6.6.2 Update the Superuser's PATH

All of the Linuxha.net commands are installed in a non-standard directory, and so it is
recommended that the following directory is added to the default PATH for “root”:

/sbin/cluster

Lines such as the following could be added to either “.profile”, “.bashrc”, “.kshrc” or “.zshrc”,
depending on the distribution and choice of shell. Since software components are either stand-
alone scripts or Perl programs and so the choice of shell used for the “root” account does not
affect their functionality.

Typical entries to add to the “.profile “might be:

export PATH=/sbin/cluster:$PATH
export MANPATH=/usr/local/cluster/man:$MANPATH

6.7 Installation differences between 2.4 and 2.6 kernels
Early versions of Linuxha.net that made use of ENBD as the network block device required
some additional installation steps. Since the migration to DRBD this is no longer the case.

With the current versions of the software the installation and use of the software should be
identical on both 2.4 and 2.6 based kernels.

6.8 Upgrading from previous Installations
This section covers the “basic upgrade” scenario. This approach is safest in all configurations. A
separate section covers possible on-line upgrades, though this is only recommended for those
with considerable experience of the product. Although this basic process is straightforward;
there are still several points to bare in mind when upgrading to a newer version of Linuxha.net.

In all cases please review the documentation section of the web site. It may contain a guide
describing the upgrade and migration process from to to certain release levels. Failure to read
the appropriate guides may result in data loss.

• Installation will require that the cluster is not running. If the environment in question is
installed and managed using any of the packaged solutions (Tarp, RPM or Autopackage) the
installation will not be allowed if the cluster is still running. However if installation directly from
the tarball takes place you will manually need to stop the cluster first, for example by running:

clhalt --force

• Simply installing over the top of a previous version is now possible. However it is only
recommended that this approach be taken if the current version installed is 0.9.0 or greater.

• Unless specified in any release-specific notes installation will not require the rebuild of
either the cluster configuration or any currently defined applications. Of course the packages
might need to be rebuilt to take advantage of additional facilities newer versions might offer.

Page 40

 Linuxha.net Administrator’s Reference

7 Building the Cluster Configuration
The aim of this section is to discuss how it is possible to take information on the hardware
configuration of the two machines that are to make up the cluster, and generate a configuration
file to define the cluster based on this information.

Since this is a reference it si recommended that the appropriate “Cluster Configuration Guide” to
referred to as well until the administrator is familiar with the software.

Typically most Linux software relies on the administrator “hand-cranking” the solution. Due to
the complexity and potential for mistakes it was deemed early in the design that as much as
possible configuration of the cluster would be automated, hence the actual configuration
necessary can be performed very quickly.

It is not improbable for an administrator of the software to install, build and configure a cluster
including a standard application, (such as Apache) in under two hours (excluding data
synchronisation).

7.1 Detailed Example Cluster Configuration
A common cluster configuration is now shown as a sample configuration. Different examples of
possible server configuration, and any important considerations for such approaches is shown
previously (see information starting on page 42).

The information below shows the configuration of the sample environment used for the
remainder of this section:

In the above diagram each machine has three interfaces, one (“eth2”) dedicated for the DRBD
data replication traffic (and configured using a cross-over cable), whilst the other two (“eth0” and
“eth1”) being connected to a “public” network – the network that will be used by clients when
accessing the application.

The lack of redundancy of the “drbd” is a slight concern, but typically still a common scenario.
For a production environment the network infrastructure should probably be monitored anyway
and hence suitable recovery actions started as soon as possible.

Both “ServerA” and “ServerB” will use a volume group “app01vg” which will provide the storage
for the application to serve – in this example it will be an Apache web server.

Page 41

servera serverb

router b

client 1 client 2 client 3

eth0 eth0

eth1 eth1

eth2 eth2

public network

router c

 Linuxha.net Administrator’s Reference

The table below shows some basic network topology details for the sample cluster:

ServerA ServerB
Static IP (on Eth0) 172.16.177.1 Static IP (on Eth0) 172.16.177.2
Static IP (on Eth2) 192.100.100.1 Static IP (on Eth2) 192.100.100.2
Network “drbd” eth2 Network “drbd” eth2
Network “public” Eth0 / Eth1 Network “public” Eth0 / Eth1
DRBD network drbd DRBD network drbd

Notice the following important points regarding server configuration:

(1) Any “standby” interface on a server must not be allocated an IP address - though it must be
active - that is be visible via “ifconfig -a”.

(2) All networks configured must be on different subnets otherwise IP routing to the host will not
work in the way the administrator might expect.

(3) Heartbeat traffic is not defined as being used on particular interfaces or networks. All are
tried and when one is found that works it is relied on until it fails.

(4) The actual cluster configuration consists of many more entries - the above are just the
minimum that must be defined to use the sample cluster topology.

Now that basic cluster topology has been defined, below are the basic settings for the actual
sample “Apache” application. Again these are teh basic details, many optional parameters are
possible - these are described in detail from page onwards).

Property Value

Basic Application Details

Application Name apache

Application Description Provide access to Apache v2 web server

Application network / IP Address “public” / 172.16.177.200

Process Monitor (#1) Details

Monitor description Web Server Processes

Name / Pattern to monitor httpd

Process Owner nobody

Minimum number running 1

Maximum number running 10

Page 42

 Linuxha.net Administrator’s Reference

Property Value

Volume Group (#1) Details

Volume Group Name app01vg

Logical volume 1 – name admin

Logical volume 1 – mount point /apache/admin

Logical volume 1 – size 20 Mb

Logical volume 2 – name docs

Logical volume 2 – mount point /apache/docs

Logical volume 2 – size 20 Mb

Logical volume 3 – name logs

Logical volume 3 – mount point /apache/logs

Logical volume 3 – size 20 Mb

As you can see the configuration is very modest – in fact this is an implementation built using
two virtual servers in “Vmware” – though User Mode Linux might be just as effective or even
Xen.

If you wish to build a similar sample package you can find the sample configuration available as
a package using the following URL:

http://linuxha.net/index.pl?ARGS=findproject:linuxha-apache

The above logical volume requirements to do not include meta-data volumes that will be created
by Linuxha.net for each file system. Given that each meta-data volume must be 128Mb this can
lead to a significant overhead when using multiple file systems though it is absolutely required to
enable correct and accurate handling of data replication on a per file system basis.

Page 43

http://linuxha.net/index.pl?ARGS=findproject:linuxha-apache

 Linuxha.net Administrator’s Reference

7.2 Initial Cluster Build
When performing the initial cluster build the applications that are to be clustered do not need to
be available, though if they are currently mounted and in use this should be on the machine that
is considered the “primary” machine – the machine that alphabetically would come first if you
compared the two host names. Hence if “ServerA” showed the following it would not present any
problems at this stage.

Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 1542156 1037104 505052 68% /
/dev/app01vg/admin 19248 352 18896 2% /apache/admin
/dev/app01vg/docs 19248 1180 18068 7% /apache/docs
/dev/app01vg/logs 19248 168 19080 1% /apache/logs

Using the information shown previously we need to create a configuration file defines the
cluster. To build the cluster the following file needs to be created:

/etc/cluster/clconf.xml

An example configuration file that can be used as a template can be found in this directory - this
is part of the standard Linuxha.net product distribution.

This configuration file describes the cluster, and like all configuration files that are meant to be
edited by the cluster administrator, is a simple XML file. Using the information shown previously
it could be defined as follows. Notice that some of the information is taken from the table shown
on page , but other elements shown have yet to be defined. Please see the table following this
example configuration for summary details:

<?xml version="1.0"?>
<clconf>
<global>
 <name>cluster1</name>
 <version>0.3</version>
 <data>replicated</data>
 <datadetail>drbd</datadetail>
 <dataprotocol>C</dataprotocol>
 <logdir>/var/log/cluster</logdir>
 <key>mykey</key>
 <port>9900</port>
 <clport>9849</clport>
 <clnetdport>9850</clnetdport>
 <portpool>9901,9999</portpool>
 <maxblockdevs>50</maxblockdevs>
 <drbd_network>drbd</drbd_network>
 <echotype>ICMP</echotype>
 </global>
 <timings>
 <keepalive>3</keepalive>
 <warn>7</warn>
 <dead>12</dead>
 <clusterform>300</clusterform>
 </timings>
 <node>
 <name>servera</name>
 <network name="public" cards="eth0,eth1"/>
 <network name="drbd" cards="eth2"/>
 </node>
 <node>
 <name>serverb</name>
 <network name="public" cards="eth0,eth1"/>
 <network name="drbd" cards="eth2"/>
 </node>
</clconf>

Page 44

 Linuxha.net Administrator’s Reference

7.2.1 Field-by-Field explanation of “clconf.xml”

If the sample configuration file is used as a template the creation if this file just takes a few
minutes. A more complex cluster configuration obviously will take more time. Each of the fields
in the file should be understood before continuing, starting firstly with a description of the
“Global” settings:

Field Purpose
Global.name The name of the cluster – this can be any length, but should be

alphanumeric and not contain any spaces.

Global.version This defines the version of the configuration file format that is being
used – at the moment this should always be “0.3”. This provides a
sanity check to ensure the software and configuration file are
compatible.

Global.data This will always be “replicated” for the moment, though “shared”
might be supported in the future when shared storage clusters are
supported.

Global.datadetail Current versions of the software only support “drbd” - older versions
supported “enbd” and “nbd” bu such values are no longer valid.

Global.dataprotocol An optional setting that defines the DRBD protocol to use for data
replication. If not present the safest setting of “C” is used. Can be
set to “A”, “B” or “C” - view DRBD documentation for information
regarding the differences each protocol makes.

Note that “C” is the safest (and slowest) protocol supported.

Global.Logdir The name were log files are written to by the main utilities. (This is
not really used properly, currently changing this from
“/var/log/cluster” is not supported).

Global.key This is critical. It defines a key which is used to validate all
communication between the nodes in the cluster. This should be a
alphanumeric string and should include no spaces or periods.

This information is then used as part of a random key that encrypts
every client/server communication between cluster nodes and
services. Hence the cluster configuration file must be readable only
be “root”.

Global.port Indicates the port number on which the cluster daemon should listen
on, and send requests to on the remote node. This port can be any
you wish, though typically 9000 is used unless the administrator has
a good reason to use another.

Global.portpool A min,max list of ports that define a range of ports than should be
scanned when looking to allocate a port for a each replicated file
system. This same range of ports must be available on both nodes,
and a range covering at least 50 ports should be specified. The
number available determines the total number of file systems that
the cluster can manage – so 50 is more than enough for most
cluster topologies.

Global.maxblockdevs The maximum number of network block devices that can be defined
in the cluster. This currently must provide the same number of
devices as the range given in the “port” pool, since each network
block device requires a network port and a block device.

Global.clport The network port allocated on both ndoes of the cluster that can be

Page 45

 Linuxha.net Administrator’s Reference

Field Purpose
used for the cluster lock daemon. This is optional, but if not present
cluster lock support will be disabled - which is strongly discouraged.

Global.clnetdport Thet network port allocated to both nodes for the cluster network
daemon. Again this is optiona, though if removed it will mean that
network fail-over functionality for the cluster will be disabled.

Global.drbd_network The logical network name defined in the “networks” section which is
used for communication of DRBD data replication traffic.

Global.echotype The type of request send between the nodes when ascertaining
whether a network is suitable for heartbeat testing. Heartbeats used
a dedicated protocol, but use this echo request type when probing a
network for the first time.

The default value is “ICMP”, but the cluster can use “UDP” or “TCP”
- though these will likely require the administrator to configure such
services explicity on each node.

Page 46

 Linuxha.net Administrator’s Reference

The next table defines the values given in the “timings” section which are critical for deciding
how long to wait before a node is considered as being down, how long to wait to form a single
node cluster, and how often heartbeat packets should be broadcast.

All times are given in seconds, and can include fractions if deemed necessary or useful.

Field Purpose
Timings.keepalive How often signals should be sent between the cluster daemons to

ensure that each node is considered “alive”. A typical range of
values is between 1 and 10 seconds, though a value lower than 3 is
not recommended for all existing software versions.

Timings.warn The duration of time after which a warning is logged indicating that
no heartbeat packets from the alternative node has been made
available. Typically defined as twice the “keepalive” value.

Although this value does not alter any characteristics of the cluster it
is very usefil since it will cause a warning to be given after failing to
contact the alternative node at this time. This can then be used to
alter the timings if the nodes are particularly busy.

Timings.dead After this period of time the node that did not respond is marked as
“dead” (assuming it is not decided that network partitioning has
occurred). In this instance the daemon start start to take over the
affected applications. Typically defined as between 5 and 30
seconds.

Timings.clusterform This defines the default length of time one cluster daemon will wait
for the other daemon to respond when attempting to form a new
cluster. Typically this is set between 60 and 300 seconds. It can be
overridden on the command line if so required.

The final section of the configuration file defines which nodes will form part of the cluster, and
also defines the network topology that should be considered as being part of the cluster. If an
interface is not defined in this list then it will not be monitored by the cluster network daemon, for
example.

Field Purpose
Node.name The name of a node – must resolve to an IP address that both

nodes can use – though does not matter which of the various
interfaces that are available to the nodes.

Node.Network/name A single word which is used to label one or more network cards that
can be used to host a series of IP addresses.

Node.Network/cards A comma-separated list of network interface names that form this
network. The points following this table should be considered when
defining the network topology for each node.

Page 47

 Linuxha.net Administrator’s Reference

When defining the cluster networking configuration, consider the following points:

Ø The cluster must include at least one defined network - this being used for the DRBD
replication traffic, as used in the “drbd_network” element in the globals section.

Ø The list of cards given for a network must currently be Ethernet cards, using the naming
scheme of “ethN”.

Ø The minimum number of cards defined for a network is one, whilst the maximum is not
defined.

Ø Both nodes in the cluster must provide the same logical networks, though the interface
names, and numbers can be different on each node.

Ø A particular interface card can only be part of a single “network” entry.

As stated, the globals for “portpool” and “maxblockdevs” are closely related - the lowest
number of these two settings define the maximum number of replicated file systems that the
cluster can deal with.

Much more information on resource allocation can be found in the next section where
discussion of adding applications to the cluster can be found.

7.2.2 Heartbeat Considerations

Please note the following differences of Linuxha.net in handling “heartbeat” packets compared
to many other clustering products:

Ø The definition of which networks can be used for heartbeats is not explicity defined - the
software will make use of those it deems are reachable from the primary to the secondary
server.

Ø At any one time only a single heartbeat package is sent across a single defined network,
rather than being sent across all networks.

Ø If a heartbeat packet does not arrive in the “warn” time period the cluster will re-scan all
networks looking for a suitable alternative.

Ø All heartbeats are sent over standard IP interfaces using the standard encryption method
used for the cluster - no dedicated serial links or network interfaces are required.

This approach has been taken since it provides a good level of protection with a low CPU
usage, and yet gives compariable fail-over times in most circumstances.

Hence the suitability of a network if the existing one fails is determined by Echo requests - the
cluster supports ICMP, UDP and TCP echo types, though in most cases ICMP works well.

To guard against network partitioning more than one logical network should be defined in the
cluster topology. Even if no applications are ever to use a particular interface and this interface
is not also used for DRBD traffic, then still considered adding a network definition for it.

One novel idea that has been successfully used is to define a network consisting of a
wireless card on each server. Although the cluster network daemon is not able to monitor this
network it does provide a useful fail-safe in case the cluster network intrastructure dies.

The most secure way of assuring that a network is suitable for hosting the heartbeat requests is
to make use of “UDP” or “TCP” packets. Neither of these are used by default since typically they
require some configuration in “Inetd” or “Xinetd” on each host will need to be updated to ensure
the relevant service is available.

For example in the “Inetd” configuration file, “/etc/inetd.conf” the following line was edited back
into the configuration to support “TCP” based pings:

echo stream tcp nowait root internal

Page 48

 Linuxha.net Administrator’s Reference

After making this change on both hosts refresh the Inetd daemon as well:

killall -HUP inetd

Failure to ensure that the relevant Echo request referenced in the cluster configuration file will
result in unpredictable cluster behaviour.

If the machines in question are linked to public networks then it is recommended that either a
firewall is put between the servers and this network, or IP tables configured to each of the
servers to ensure that the Echo requests are dropped unless they come from either cluster
node.

7.2.3 Cluster Network and Locking Support

Although the setting defining the network ports for the network and locking daemons are actually
optionally, there is no reason for not adding them, and lots of reasons for adding them.

When running a cluster with only a single application there is no benefit to running the locking
service since it is designed to present two applications from interfering with resources that might
be common. However since the locking daemon actually sleeps when not in use, it consumes
virtually no CPU and thus letting it run in all scenarios is recommended.

Each node runs a locking daemon since the resources that are being guarded are local to each
node. The locking daemon is very flexible - it has a built in list of locks that can be managed,
though it is possible to define an alternative set, or override the existing lock time-outs if desired.

By default a sample locking configuration is included in the Linuxha.net distribution with the
following path/name:

/etc/cluster/cllocks.xml

The file is straightforward XML:

<?xml version="1.0" standalone="yes"?>
<cllocks>
 <lock name="NET"
 desc="Network Config"
 maxt="40"
 />
 <lock name="NBD_CLIENT"
 desc="DRBD Primary Access"
 maxt="45"
 />
 <lock name="NBD_SERVER"
 desc="DRBD Secondary Access"
 maxt="45"
 />
</cllocks>

Page 49

 Linuxha.net Administrator’s Reference

7.2.4 Building the Cluster

Once the “clconf.xml” file has been created on the primary node - “ServerA” in this example –
the cluster can actually be “built”, using the “clbuild” command, which has the following syntax:

clbuild [-V|-verbose] [-F|--force]

The “clbuild” utility performs a large range of environment checks, (making use of “ssh” as
appropriate to communicate with the other node in the cluster). It is recommended that the
administrator run it with the “verbose” option to gain an understanding of the work being
performed. The other point to consider is that this can be some time (up to a minute or more on
large configurations) so the “verbose” option provides useful as a progress indicator as well.

Consider the following list which defines just some of the checks that get performed:

Ø Check that the /etc/cluster/clconf.xml file exists.
Ø Check that the cluster is not already running (unless the “--force” option is in use).
Ø Check that a build checksum file does not exist, (unless the “--force” option has been

selected).
Ø Check that it is owned by root (0), and has no read access to anyone else.
Ø Check that the configuration file contained minimum number of values.
Ø All mandatory options which can not be defaulted are present in the configuration file.
Ø Check to see if the port pool contains at least 10 ports.
Ø Issues a warning if the “maxblockdevs” setting is too small (less than 10 entries).
Ø Checks to see if the DRBD kernel module exists and is loaded - attempts to load it if not.
Ø Ensure that LVM v1 or LVM v2 exist on both servers – and then if the necessary

administration commands exist.
Ø Check to see if command line tools for network monitoring exist (which are used as a fall-

back), and issue warning if not.
Ø Check that we are able to resolve the names of both nodes.
Ø Check that we are able to “ssh” to specified node via the node name.
Ø Check that the remote node can “ssh” back from the other node to the local node.
Ø Check that the nodes are able to ping the IP addresses defined for the cluster topolgy, and

issue warnings if not.
Ø That the specified network interface cards defined in the topology currently exist.
Ø Ensure no card is referenced more than one in the topology.
Ø Ensure the network name defined for the DRBD replication data is defined for both nodes.
Ø Check that the current node is not already running the “cldaemon” daemon (unless the “--

force” option has been used).
Ø Check that the the DRBD command line tools necessary are installed in the expected

locations..
Ø Check that both nodes have user-space tools for the Logical Volume Manager.
Ø Check that the name of local machine is one of the node names in the configuration file.
Ø Check the interfaces defined for the local machine actually exist, (though some might not

currently have IP addresses - so called “standby” cards)

Once SSH communication has been verified it will also perform further checks on the remote
node, including:

Ø Check that the node is not already running the “cldaemon” daemon (unless the “--force”
option was used).

Ø Check that the node does not already have a clconf.xml file (again unless “--force” was
used).

Ø Check for the relevant DRBD and LVM user-space tools are present and available in known
PATH locations.

Page 50

 Linuxha.net Administrator’s Reference

Once these verification steps have been completed successfully it will:

Ø Create the /etc/cluster directory remotely if it does not exist
Ø Use the MAKEDEV.pl utility to create any DRBD device files if necessary on both nodes if

necessary.
Ø Copy the configuration file to /etc/cluster/clconf.xml remotely
Ø Create suitable log directories on both servers if required
Ø Create resource files on both servers (under /etc/cluster/.resources) if necessary
Ø Create a checksum file for the cluster build.

Running the “clbuild” utility whilst an existing cluster is running is supported – When such an
action takes place resources can be increase, and certain parameters will be dynamically
changed for the running cluster. See the section covering Cluster Administration later in the
document for further details.

“Udev” /dev configurations are also supported for Linux 2.6 based distributions. In such cases it
will also create suitable entries in the “devices” directory to ensure they copied into “/dev” when
the machine boots.

7.2.5 Creating “resource” flags

The program will create the following file for each currently available port defined in the range:

NNNN.free

This file will be created in the following directory:

/etc/cluster/.resources/ports

The above name indicates that the specified port is not currently allocated for any purpose in the
cluster. If a port is assigned to serve as a part of a DRBD device (one for each file system is
requireed), then the file would be renamed as follows:

NNNN.application.volumegroup.logicalvolume

For example:

9901.apache.datavg.data1

Notice that the port allocations for the same file system (hence logical volume / volume group)
must make use of the same values - the cluster allocation of resources ensures this is the case,
otherwise the cluster will not function.

Simialr to the network ports, the actual block devices minor numbers are stored in the following
directory on each host:

/etc/cluster/.resources/drbd

In a specified minor number (always starting at 0) is not in use it will have an entry in this
directory of the following format:

NN.free

If this is allocated to a logical volume, in a volume group, for an application the form of the name
will be as follows:

NN.application.volume.logical

By running “clbuild” the “free” resource files will be created – though if a resource is already in
use, it is left unchanged – ensuring that if applications have been built the information regarding
their resources is not lost. This is particular important since the cluster now supports re-running
the “clbuild” command at any time.

Page 51

 Linuxha.net Administrator’s Reference

7.2.6 Running the “clbuild” Utility

At that point the basic details of the cluster have been created - it will not run anything and no
applications have been added / installed. However we have validated that both nodes are
capable of running cluster software based on what hardware they have and the software
installed.

When run in verbose mode the output of “clbuild” will look similar to the following - making it very
easy to detect problems:

clbuild --verbose
WARN 08/07/2005 05:04:19 This linuxha software has only be tested using the following
WARN 08/07/2005 05:04:19 range of Perl versions : 5.6.1 , 5.8.2 , 5.8.3 , 5.8.4 ,
5.8.5
WARN 08/07/2005 05:04:19 Running it with different versions of perl is not
recommended.
INFO 08/07/2005 05:04:19 Checking for required global entries
INFO 08/07/2005 05:04:19 Optional dataprotocol setting validated.
INFO 08/07/2005 05:04:19 Checking global Port Pool details
INFO 08/07/2005 05:04:19 Checking global Maximum block devices
INFO 08/07/2005 05:04:19 Checking configuration file version information
INFO 08/07/2005 05:04:19 Checking data detail value (and dependent required values)
INFO 08/07/2005 05:04:19 Checking type of data required
INFO 08/07/2005 05:04:19 Global section configuration validation complete
INFO 08/07/2005 05:04:19 Checking cluster timing details
INFO 08/07/2005 05:04:19 Checking node section details
INFO 08/07/2005 05:04:19 Checking IP address resolution
INFO 08/07/2005 05:04:19 Checking ssh cabability between Primary IP addresses (node
names).
INFO 08/07/2005 05:04:20 Networks defined for servera: public
INFO 08/07/2005 05:04:20 Networks defined for servera: public
INFO 08/07/2005 05:04:20 Validated network IP for public on servera: eth0 -
192.168.0.130
INFO 08/07/2005 05:04:21 Validated network IP for public on serverb: eth0 -
192.168.0.134
INFO 08/07/2005 05:04:21 Validated unique network/interfaces for servera:
INFO 08/07/2005 05:04:21 Interface eth0 is on network 192.168.0.0
INFO 08/07/2005 05:04:21 Validated unique network/interfaces for serverb:
INFO 08/07/2005 05:04:21 Interface eth0 is on network 192.168.0.0
INFO 08/07/2005 05:04:22 Successfully copied network configuration to serverb.
INFO 08/07/2005 05:04:22 Validated data replication network is ok (public).
INFO 08/07/2005 05:04:22 Able to send ping to DRBD Ip address 192.168.0.130 for
servera
INFO 08/07/2005 05:04:22 Able to send ping to DRBD Ip address 192.168.0.134 for
serverb
INFO 08/07/2005 05:04:22 Node servera is not running a cldaemon process (good)
INFO 08/07/2005 05:04:22 node serverb is not running a cldaemon process (good)
INFO 08/07/2005 05:04:22 DRBD administration tools found on servera.
INFO 08/07/2005 05:04:23 DRBD administration tools found on servera.
INFO 08/07/2005 05:04:23 Found LVM v2 on servera
INFO 08/07/2005 05:04:23 Found LVM v2 on serverb
INFO 08/07/2005 05:04:23 LVM v2 command set appears to be installed on servera
INFO 08/07/2005 05:04:23 LVM v2 command set appears to be installed on serverb
INFO 08/07/2005 05:04:23 Physical network check library miitoollib found on servera.
INFO 08/07/2005 05:04:23 Physical network check library miitoollib found on serverb.
INFO 08/07/2005 05:04:24 Creating DRBD devices on servera...
INFO 08/07/2005 05:04:24 Creating DRBD devices on serverb...
INFO 08/07/2005 05:04:25 Created Port Resources directory on servera
INFO 08/07/2005 05:04:25 Created 99 port allocation files on servera
INFO 08/07/2005 05:04:25 Created Port Resources directory on serverb
INFO 08/07/2005 05:04:46 Created 99 port allocation files on serverb
INFO 08/07/2005 05:04:46 Created DRBD Resources directory on servera
INFO 08/07/2005 05:04:46 Created 50 DRBD allocation files on servera
INFO 08/07/2005 05:04:46 Created DRBD Resources directory on serverb
INFO 08/07/2005 05:04:58 Created 50 DRBD allocation files on serverb
INFO 08/07/2005 05:04:58 Transferring cluster build checksum to serverb
INFO 08/07/2005 05:04:58 Successfully copied clconf.xml to serverb
INFO 08/07/2005 05:04:58
INFO 08/07/2005 05:04:58 Clbuild has completed without errors or warnings
INFO 08/07/2005 05:04:58

Page 52

 Linuxha.net Administrator’s Reference

At this point “Serverb” will also have a copy of the “/etc/cluster/clconf.xml” file, and the log
directories will have been created on each server, if necessary.

It should be remembered that “building” the cluster using the above routine does not actually
start anything on the servers – this can be checked by running the following command:

/sbin/cluster/clstat

The “clstat” is the cluster status reporting tool (and is explained in detail later). However in this
instance all you will see is:

ERROR 08/07/2005 05:08:08 Cluster md10cluster is not running.

If there are problems with the cluster configuration and the build is not completed then the
following error will be shown by clstat:

ERROR 08/07/2005 05:08:25 The cluster configuration file
ERROR 08/07/2005 05:08:25 /etc/cluster/clconf.xml appears to have been changed
ERROR 08/07/2005 05:08:25 but the changes have not yet been validated.
ERROR 08/07/2005 05:08:25 Please run the clbuild(1M) command first before
ERROR 08/07/2005 05:08:25 running this command again.
ERROR 08/07/2005 05:08:25 Please note that if the cluster is already running
ERROR 08/07/2005 05:08:25 you will need to use the --force argument. This will
ERROR 08/07/2005 05:08:25 not affect running applications.

This occurs because the checksum of the last validated file is different from the contents of the
existing configuration file. This mechanism is used by Linuxha.net to ensure that when changes
are made to the configuration files the administrator must ensure the appropriate “clbuild” or
“clbuildapp” commands are completed to validate the update configurations.

Once the configuration has been built successfully the cluster should be started to indeed
validate everything is in place:

clform

The above command should generate output similar to the following:

INFO 09/07/2005 23:50:04 Validated checksum for cluster configuration
INFO 09/07/2005 23:50:04 SSH communication to serverb will be:
INFO 09/07/2005 23:50:04 192.168.0.134 ("public" network)
INFO 09/07/2005 23:50:04 Checking that the cluster is not already running...
INFO 09/07/2005 23:50:04 *** ATTEMPTING TO FORM CLUSTER md10cluster ***
INFO 09/07/2005 23:50:04 Starting cldaemon on servera...
INFO 09/07/2005 23:50:05 Starting cldaemon on serverb...
INFO 09/07/2005 23:50:05 Waiting for cluster to form...
INFO 09/07/2005 23:50:11 Cluster md10cluster started successfully.

Notice that the utility attempts to work out an IP address to communicate with the remote node?
This functionality is used throughout Linuxha.net - it ensures that even if the network path to the
IP address defined for the node name is not available then the IP address associated with
another defined network in the topology can be used for communication instead (either SSH or
Linuxha.net client/server protocol).

Once the cluster has been started the administrator can confirm this by running “clstat” again,
this time it should show instead:

Cluster: md10cluster - UP

 Node Status
 servera UP
 serverb UP

Page 53

 Linuxha.net Administrator’s Reference

If the cluster does not the most likely reason is that the two nodes have a difference of more
than 10 minutes. In this case the following will have been shown:

ERROR 08/07/2005 05:17:26 Cluster has failed to start. Log entries given below:
ERROR 08/07/2005 05:17:26
ERROR 08/07/2005 05:17:26 INFO 08/07/2005 05:17:23 Response to ECHO was FORMING (our
state=FORMING)
ERROR 08/07/2005 05:17:26 INFO 08/07/2005 05:17:24 Response to ECHO was STARTING (our
state=FORMING)
ERROR 08/07/2005 05:17:26 INFO 08/07/2005 05:17:24 Response to ECHO was UP (our
state=FORMING)
ERROR 08/07/2005 05:17:26 INFO 08/07/2005 05:17:24 Both nodes agree UP
ERROR 08/07/2005 05:17:26 ERROR 08/07/2005 05:17:25 Time difference between nodes is
>10 minutes - require --force to start!

As the error indicates if the administrators wishes to form the cluster without correcting the time
difference, then run the “clform” again with the force option:

clform --force

At this point the “clstat” command should indicate the cluster has been formed, and so the
administrator can move on with the next step - adding applications to the cluster. The next
section covers installation of a sample “Apache” application - for more generic guidelines
covering any application please view the “Linuxha.net Basic Application Configuration Guide”.

Page 54

 Linuxha.net Administrator’s Reference

8 Building the sample “Apache” package

8.1 Creating the Application Configuration File
Applications can be added to the cluster at any time - the cluster does not need to be running.
However if the cluster is up and functioning the application, once built, will be available
immediately for use - there is no requirement to restart any software components.

The only requirement is that both nodes are contactable - this is because the process of building
a application definition must define and allocate resources on both nodes in the cluster.

Before an application is made available via the cluster the administrator must define a file which
describes the application in detail – including networking, storage and application script
requirements.

The example here is based on a sample configuration that you can download if you wish – it
does include a build script to automate much of this process. See the link on page for further
details.

The configuration file can be placed on either node in the cluster – though if the application is
already clustered and is running, the steps must be performed on the node that currently runs
that application. Of course for a new application any node will do - though that node must
currently have all the file systems that will contain data to be mounted.

This means that the administrator may have to define a volume group on both nodes, create
new logical volumes on a primary node, create file systems and copy in the data to replicate -
and then mount it - more details follow the description of the configuration file to generate.

The configuration file you must create for an application is as follows:

/etc/cluster/application/appconf.xml

In this instance the name of the configuration file created is:

/etc/cluster/apache/appconf.xml

Page 55

 Linuxha.net Administrator’s Reference

The contents of this example configuration file are as follows:

<?xml version="1.0"?>
<appconf>
 <global>
 <version>0.1</version>
 <name>apache</name>
 <takeover>normal</takeover>
 <syncrate>2000</syncrate>
 </global>

 <networks>
 <network net="main"
 ip="172.16.177.200" netmask="255.255.255.0"
 checklist="172.16.177.1" checkpercent="100"/>
 </networks>

 <vg>
 <name>app01vg</name>
 <type>filesystems</type>
 </vg>

 <application>
 <startscript>/apache/admin/scripts/startapp</startscript>
 <stopscript>/apache/admin/scripts/shutdown</stopscript>
 <maxstoptime>10</maxstoptime>
 <maxstarttime>20</maxstarttime>
 </application>
</appconf>

Each of the entries will now be explained, starting with the global options. Please note that some
directives are described in more detail later in the document - see the section “Easier
Application Management”, starting on page .

Element Purpose
global.version The version of the application configuration file format – this will

be used to ensure that upgrades to software notice different
options available.

global.name The name of the package that is being described. This should
be the name of the directory where this file lives, and should not
contain white space.

global.takeover Can be either “normal” or “force”. If normal then the cldaemon
will only allow a fail-over to a node if that node has current data,
“force” will allow fail-over even if the data is not current.
Note that if this item has not been specified, or specified with in
incorrect value, it will default to “normal” (which maximises data
consistency at the expense of availability).

global.syncrate (Optional). The rate (defined in Kb/second) that should be used
when synchronizing data between the two nodes. This value
defaults to 1000Kb/second. This setting is per-device.

global.autostart (Optional). Set to “true” or “false” (Optional). This is used by
“clform” and “clstart” to indicate whether to automatically start
the application when the cluster is formed.

global.dependencies (Optional). A comma-separated list of other applications in the
cluster that should ideally be up and running prior to this
application starting. It is used by “clform” and “clstart” to
determine the order of starting applications.

global.preferred_node (Optional). A directive which defines where the application
should reside if the cluster is currently running optimally.

Page 56

 Linuxha.net Administrator’s Reference

The networking section basically defines which networks and the IP addresses to use. The
entire section is optional, and the “network” element can occur zero, one or more times for an
application. The attributes that are defined in each “network” entry are mostly optional:

Element Purpose
network.net The name of the network the specified information should be

applied to.

network.ip One or more IP addresses to place on the specified network.
The format of the IP address is:

AA.BB.CC.DD[,EE ...]

Hence support for mulitple IP addresses is currently possible by
changing the last byte of the IP address.

network.netmask (Optional). If the default network mask for the specified network
is not suitable when assigning the IP addresses than the
netmask can be specified.

network.broadcast (Optional). Only necessary if the default broadcast address is
not valid for the IP addresses being assigned.

network.checklist (Optional). A comma separated list of host names or IP
addresses that should be pinged to check IP-level connectivity.
If not set no IP level connectivity checking will be available -
even if configured for this application in Lems.

network.checkpercent (Optional). The percentage of hosts that must be ping-able on a
given interface to consider it working. If this is not specified it
defaults to 100. Obviously the value should be between 0 and
100, where 0 effectively turns off IP monitoring.

Administrators of earlier versions of Linuxha.net clusters will notice that the network
configuration is for application avoids any information on the overall cluster network topology.
This change makes the cluster easier to manage, but was also necessary to introduce the
dynamic changing of the clustered applications or the cluster itself.

The “checklist” and “checkpercent” are used by the cluster (if available from a currently running
application), to check whether a new interface to use is actually working as expected. Mostly
such information is not required in most clusters since the inbuilt physical network connection
monitoring offered by the cluster network daemon is adequate.

The type of ping and the time-out to use when using “checklist” and “checkpercent” are defined
in the cluster topology file.

All ping checks are carried out in sequence at present. Support for “parallel” pings (which can be
much faster when using large timeouts) will be supported in later versions.

The remaining two sections, “vg” and “application” are also optional. The entries in the “vg”
section can be repeated zero or more times, once for each volume group.

Page 57

 Linuxha.net Administrator’s Reference

Element Purpose
vg.name The name of the volume group that is associated with this

application. This does not need to include the “/dev” prefix.

vg.type How to treat the volume group – currently the only accepted
entry is “filesystems” - which means that all mounted file
systems will be recorded and then mounted or unmounted as
required when the application starts or stops.

application.startscript The name of the program to run when the application needs to
be started. This script MUST EXIT once the application has
been started - thus it must “nohup” and “background” any non-
deamon type applications as necessary.

application.stopscript The name of the program to run when the application needs to
be stopped. It should exit once the application has stopped.
Please note that if this takes too long the package may decide
to continue the package stop without waiting for this to
complete.

application.maxstoptime The maximum amount of time (in seconds) that the cluster will
attempt to stop the application for before aborting the process
and continuing with the steps necessary to stop the application.

Current versions of Linuxha.net support the “startscript” and “stopscript” have parameters, which
must be white space separated from the command path.

8.2 Network Availability Considerations
Although the current versions of Linuxha.net no longer support “bonding” to combine
multiple interfaces, such functionality is likely to return in some form in later releases. At
the moment the administrator can skip this section, since it now only contains useful information,
it does not affect how the cluster can be configured presently -hence skipping to page 59 is
recommended.

8.2.1 Bonding verses Fail-over network Types

These two different types of network functionality for provision of the application IP address are
available since they meet different requirements for high availability clusters. The differences
between each type will can be summarised as follows:

• IP availability on NIC/Cable failure
Most applications and clusters will make use of the “fail-over” network type. In this scenario
hardware level checking, (if supported by the network cards), will typically spot a problem
within two seconds and migrate the affected IP address to another candidate card (or switch
node if deemed more appropriate).

Hence there will be a small outage (several seconds) whilst the IP address is migrated to
another logical interface. If multiple applications are running this outage might last longer for
some applications compared to others since each application will be done in turn.

When using the “bonding” type of network the driver itself is responsible for checking the
health of the network connections and on a hardware failure will deal with the issue
transparently to the application or cluster software. The result is that no network outage will
occur - obviously a significant advantage compared to “fail-over” network types.

• Performance
When using “fail-over” networking the bandwidth available to an application is limited to that
of the current card in use. The “bonding” driver, depending on the environment and chosen
configuration, allows bandwidth aggregation of all interfaces for the application, thus offers a
considerable advantage for applications expecting a high volume of client/server traffic.

Page 58

 Linuxha.net Administrator’s Reference

However in most circumstances a single card, (particularly if Gigabit), is adequate is
everything apart from the most unusual of circumstances.

• Complexity
The “fail-over” network type is very straightforward - simply provide it with a list of cards that
are connected to the correct network for the application and it will make use of them,
performing hardware and/or IP level checks as defined by the application configuration.

Unfortunately channel bonding as used by the “bonding” type is much more complex - it
offers many modes of functionality, including active/passive or active/active configurations.
Further the functionality available is determined by the cards in use and the network
equipment they are attached to.
The default configuration used by Linuxha.net should suit most environments, but is built
only for availability rather then aggregation of bandwidth.

If channel bonding is chosen it is recommended that the administrator read carefully the
nodes in the following files, for whichever version of Linux is in use:

Documentation/networking/bonding.txt

Please endeavour to manually try a particular configuration before attempting to configure an
application to use it!

• Resource Requirements
With network types of “fail-over” the IP address is assigned as a virtual IP address on the
specified interface. This means that the same interface can be used for multiple applications
simultaneously - very useful it have more than a single application is clustered or a limited
number of Ethernet cards are available.
Due to the close interaction with the underlying hardware such an approach is not possible
when using the “bonding” network type. In this cases the cards defined for the application
must not be in use at all. If they are then the cluster software is not able to define an bonding
device making use of them and the application will fail to start.

Hence “bonding” is only really useful if you allocate particular cards to each application - only
possible if the administrator has one or possibly two applications to cluster, and a significant
number of network cards!

8.2.2 Supported Bonding Modes

The default mode should work under all circumstances, however the “mode” value can be
changed to other values also, such as:

Mode Characteristics
0 Basic round robin policy - provides fault tolerance and performance by using

different cards to transmit each frame. Requires no specific protocol support from
the switch, and indeed the interfaces can be connected to different switches, hubs
or directly to the other node.

5 Adaptive transmit load balancing - again this does not require any particular protocol
support from the switch. One slave interface is responsible for retrieving all traffic,
(obviously changing if it fails), whilst all transmissions make use of the least heavily
used interface, taking into account the performance available for each card.
This policy can be useful if the amount of traffic sent from the application is much
larger than the amount the clients send, (i.e. client-server rather than peer-to-peer).

6 Adaptive load balancing - like mode 5 but also actively balances incoming traffic
across the available interfaces, and again requires no special switch support.
The Ethernet cards when used in this mode must support setting the hardware
address, since load balancing is achieved using ARP negotiation.

Page 59

 Linuxha.net Administrator’s Reference

When “bonding” is used at least two interfaces must be specified for each node. When the
application starts on a server a check is made against the list of interfaces to find two that are
not currently being used - these are then bonded for the duration of the running of the
application. Of course when the application is restarted on the same server the same two cards
might not be used.

The software determines that a card is a candidate for bonding if the IP address is currently
0.0.0.0 - hence the interfaces specified in the configuration should be set to this IP address as
part of the boot sequence on the host.

8.2.3 Link-level checking verses IP level checking

Although IP level checking is supported the recommended approach is to ensure that the
network cards support link level checks - most do these days. In this case the software will
make use of the facility to ensure that the network connection for a card is working at the link-
level, which is much more reliable than simply pinging lots of IP addresses.

However IP address level checking is supported since some cards do not support such checks.
It is also possible, (and recommended in some circumstances), to use both at the same time.

With IP level checking the range of IP addresses specified is pinged on a regular basis, and if
the percentage of successes drops below the value specified in the application configuration
file, then the cluster will attempt an IP fail-over.

8.2.4 Sharing Multiple IP addresses

You may wonder whether you need to have as many Ethernet cards as applications you intend
to run … luckily this is not the case when using the “failover” IP configuration type! Each
application that is run, after choosing a particular Ethernet card will create an “IP alias” on that
card. This means that several applications can be using the same Ethernet card to advertise
their individual application IP addresses without problems.

In most circumstances the recommendation is two use at least two network interfaces with
connections to the client networks.

8.3 Checking the Application Configuration
The first step in using the application in the cluster is to check the configuration specified for the
application is correct – for this we use the “check” mode of the “clbuildapp” program.

For applications that need to be defined in the cluster the commands should be run on the node
where the application file systems, in the volume groups specified (if any), are currently
mounted.

A typical invocation of “clbuildapp” might be:

clbuildapp --application apache --verbose --check

The flags used in the above command should now be obvious! Please ensure the “--check”
option is included to indicate that no actual steps to build the application are to be performed -
just a validity check.

Page 60

 Linuxha.net Administrator’s Reference

The “clbuildapp” utility supports the following command line arguments:

Flag Purpose
--application The name of the application to check, build or synchronise.

--verbose The utility will report informational messages as it goes about whatever
business it needs to. All lines will start with “INFO” and will appear on the
standard output device.

--check Only perform any validation checks that the utility would normally do - do not
take any actions to change either node.

--vgbuild Check the volume group configuration is the same on both nodes, which
may lead it to automatically build the required logical volumes on the remote
node in some circumstances3.

--build Allocate all resources required to allow the application to function – this
includes network ports, RAID devices and NBD devices, as well as file
system mapping information.

--force Force the step – necessary if it appears that the package has previously
been successfully built.

Before running the “clbuildapp” routine the following list recaps the necessary steps that are
expected to have been taken:

Ø The required volume group has been created on the remote machine.
Ø All necessary logical volumes on the local machine have been created with the correct

sizes, and the file systems on these logical volume mounted (including use of the correct
mount options).

Ø The mount file systems are populated with the data that is to be replicated.
Ø The application has been tested, but is not currently running (i.e. the file systems are

mounted, but no processes are using them for open files, or as a current working directory).
Ø The cluster has been built as described previously with the “clbuild” utility – see page for

details.
Ø Although the logical volumes do not need to exist on the remote system, the volume group

must contain enough free space to create them if they do not. In all cases the file systems
on the remote node should not be mounted.

Ø The IP addresses associated with the application should not be available, either defined on
the local machine, or exist at all on the network.

The “check” stage is just the first of four stages that must be performed to move from an
application defined on local storage on the current node, to one that exists in the cluster with a
true replicated data copy. In summary the steps are;

Ø Check – This checks the configuration for any errors, omissions or potential problems that
might occur.

Ø Volume Group Build – checks to see if the volume groups in question on the local server are
mirrored on the remote server, creating logical volumes if necessary under certain
conditions. It will also ensure all meta-data volumes for DRBD are created as necessary on
both cluster nodes.

Ø Build – the necessary resources to run the application in the cluster are allocated, and if the
cluster daemons are running the package will be registered with the running cluster.

Ø Synchronise - The local file systems are unmounted from the native mount points and then
the data contained within them is replicated to the remote node.

3In this case the volume group must already exist and continue enough free space for the logical volumes to create.

Page 61

 Linuxha.net Administrator’s Reference

Each of the above stages will be shown and described in turn. Firstly consider the “--check”
option. Again a large number of checks to validate the environment are performed, including:

Ø Check that the specified application is not already running in the cluster (unless used with
the “--force” option).

Ø Check that the “/etc/cluster/clconf.xml” file exists and has the correct permissions (to ensure
it is only readable by “root”).

Ø Check the node details to ensure one node list is from the /etc/cluster/clconf.xml file
Ø Check the remote node is available via SSH via any defined topology IP address.
Ø Check to ensure that a directory “/etc/cluster/.resources/fsmap/application” does not exist

locally - and if it does only continue if “--force” has been specified.
Ø Check that the local and remote nodes can the md5sum command
Ø Check that the /etc/cluster/clconf.xml matches on the remote node, (via the use of md5

checksums) - this ensures clconf.xml correctly defines a cluster.
Ø That the DRBD kernel module is present on both hosts.
Ø Check that the “/sbin/cluster/utils/mkdir” utility exists on the remote node, (used to create

mount points for file systems - more later).
Ø The “appconf.xml” for this application can be read in and parsed as valid XML.
Ø Check that the version of the configuration file matches the version of the “clbuildapp”

program.
Ø If network details are given check the networks exist in the cluster topology.
Ø If volume group details exist check that they exist on the local and remote machines.

Please note that when the “--force” option is used the “clbuildapp” can be used in “rebuild” mode
- that it is can refine an existing application that is already clustered. This can even be done
whilst the application is running. Later sections of this document described how such features
can and should be used.

To check the application configuration, simply run the following command:

clbuildapp --application apache --verbose --check

When running in verbose mode the output generated will appear similar to the following:

sample clbuildoutput here

Before continuing any problems indicated must be fixed - if not the other stages will abort with
an error since the required checksum to indicate a checked configuration will not be present, or
will be incorrect.

8.4 Validation / Build of Volume Groups
The next step of the build process is to ensure that the volume groups (if any) for the application
are the same on both sides of the cluster, (they need to have the same named volumes, of the
same size, in the same volume group).

This step will also ensure that the meta areas for DRBD data replication are created. For each
file system to replicate a separate 128Mb logical volume, on both nodes, is necessary. These
are created automatically during this step if they do not yet exist. If space is not available to
allocate these volumes, (which are named “lv_meta” - where “lv” is the name of a particular
logical volume to replicate), this this phase of the application build will fail.

To use the “clbuildapp” tool to validate / replicate the volume group configuration on the remote
node, the “--vgbuild” argument is required. Before the administrator runs it please remember the
following point:

Please ensure that the volume group, at least, has been created on the other node – and that it
is large enough to contain the logical volumes in the cluster, including the logical volumes used
for DRDB data replication.

Page 62

 Linuxha.net Administrator’s Reference

Again use of the “--verbose” option is recommended. In this instance the command and sample
output would be (omitting duplicated lines from the “--check” run):

clbuildapp --application apache --verbose --vgbuild
. . .
--vgbuild output

Following the successful completion of the command the volume groups on both nodes may
have been changed. Use the followng command to view the output on each to view thc
changes.

vgdisplay -v app01vg

Since the “--vgbuild” option used the list of logical volumes defined on the current host and
replicates them remotely. If the application already exists and is running the semantics are
somewhat different. See sections on cluster administration later in the document for details.

Page 63

 Linuxha.net Administrator’s Reference

8.5 Allocating Application Resources
At this point the logical volumes will have been validated across the two nodes – the next step is
to actually allocate the remaining resources that are needed to allow the application to run in the
cluster. This is done again using the “clbuildapp” command – this time using the “--build” flag.
When this argument is used the following steps are carried out:

Ø Check to see if the “/etc/cluster/.resources/fsmap/application” exists and unless “--force” is
specified then the program should abort (since it appears that the application is already
defined in the cluster).

Ø Check to see if the “--build” checksum file exists, and again require the “--force” option if it
does to ensure that application does not overwrite the existing configuration.

Ø Check to see if an application of this name is already running in the cluster, (if the cluster is
running). If it is abort unless “--force” has been specified.

Ø Check that all volume groups mentioned in the configuration file exist and are present
locally.

Ø Check that all the volume groups mentioned are present remotely.
Ø Check that all logical volumes mentioned are active, (since we’re getting the information

from /proc they will only show up if active!)
Ø Check that all logical volumes are open on the local machine.
Ø Check that all open logical volumes are mounted locally - (necessary to understand the

mount point information for the cluster, and the type of volumes).
Ø Ascertain the number of ports and DRBD devices needed for this application and ensure

enough resources for each exist on both nodes.
Ø Remove any existing “TIME” file for this application if they exist, (these are created when an

application starts on a node).
Ø Check to ensure that all logical volumes on the remote node are closed.
Ø Ensure that the mount points specified locally can be made on the remote machine if they

do not exist.
Ø Allocate the necessary port and DRBD devices for this application, (both locally and

remotely). If the devices for already exist for these resources then simply use those.
Ø Copy the application configuration files across to the “/etc/cluster/application/appconf.xml”

on the remote node.
Ø Generate the fsmap directory entry for this application locally, (including mount options).
Ø Copy the fsmap details to the remote node, (see the “resources” section next for details of

this file).
Ø Calculate and write a copy of the build checksum to both servers – indicating the current

application configuration is valid.

The command, as well as some typical output from running this command are shown below,
again use the “--verbose” option.

Clbuildapp --application apache --verbose --build
. . .
output of --build stuff here

8.6 Synchronising the Cluster File systems
At this point all resources required for the application as partof a Linuxha.net cluster are in
place. However at this point the logical volumes on the remote node will not have the same
contents as the local machine. Although the application could actually be used, the
recommended approach is to explicitly synchronise the data first, and once complete consider
starting the application in question.

This synchronisation effort can take place whether the cluster software is running or not, and if
the cluster is running, whether other applications managed by the cluster are running or not.

The synchronisation can be performed using yet another flag available from the “clbuildapp”
command; “--sync”. This option essentially performs the following actions:

Page 64

 Linuxha.net Administrator’s Reference

Ø Get a list of volume groups and logical volumes using the “fsmap” entry details for the
application.

Ø Check to ensure that the application is not already running (if the cluster appears to be
running).

Ø Validate that the build checksum matches the contents of the application configuratoin file,
aborting if not.

Ø Ensure that all file systems on the volumes contained in the “fsmap” are currently un-
mounted - and if still mounted, attempt to unmount them – and aborting if this is not
possible.

Ø Call the “/sbin/cluster/utils/drbd_tool” remotely to start the DRBD device server processes.
Ø Call the “sbin/cluster/utils/drbd_tool” locally to start the DRBD device clients.
Ø Force the local copy “primary”.
Ø Force a full synchronisation if “--forcesync” option has been included (see below).
Ø Monitor the status of the DRBD devices and wait until all devices for this application are

synchronised.
Ø Stop all DRBD devices on local host (for this application)
Ø Stop all DRBD devices on the remote host (for this application)

The command also supports an option “--forcesync”. This can be used to force data
synchronisation to take place, even if the DRBD device meta data indicates this is not
necessary. See “Managing Application File systems” section below for typical instances when
this might be necessary.

An example output of a build session is given below, (with some output removed to save
space/time/boredom):

clbuildapp --application apache --verbose --sync
. . .
sample --sync output here

The time taken for this to run really depends on the volume of the data to synchronise, the
performance of the machines, and the performance of the network connection between them.
Typical commodity PCs with a low cost 1Gb/sec network cards should be able to achieve
20MB/sec or more to standard PATA or SATA disks.

A common problem that occurs is that the rate of synchronisation appears to be too slow. The
administrator should recall that the “syncrate” application setting only defaults to 1MB/sec per
file system - this value can be increased and the application “rebuilt” if necessary.

8.6.1 Managing Application File systems “outside” the cluster

Once the data synchronisation is complete, all file systems should only be mounted via the
DRBD devices, rather than directly using the volume group and logical volume. It the cluster is
not running then the application can be still be started in most instances, but even if this is not
the case either of the following approaches is possible:

Ø Manually start the DRBD devices (even if just locally)
The “drbd_tool” (manual page available) allows the DRBD resources for an application to be
made available on the local machine. For example to start the DRBD devices for the
“apache” application the following commands could be used:

/sbin/cluster/utils/drbd_tool --application apache --action=start
/sbin/cluster/utils/drbd_tool --application apache --action=mount

At this point any changes could be made and the administrator should then run the following
once complete:

/sbin/cluster/utils/drbd_tool --application apache --action=unmount
/sbin/cluster/utils/drbd_tool --application apache --action=down

Page 65

 Linuxha.net Administrator’s Reference

This ensures the meta-data locally is updated. When the application is started in a normal
manner as part of the cluster it will resynchronise the changes partitions of disk
automatically.

If the remote host is still available then the remote DRBD could be started as well, thus
ensuring all data remains synchronised prior to the application starting in the cluster. To do
this an additional command is necessary before any after making the changes:

ssh remote /sbin/clsuter/utils/drbd_tool --application apache \
 --action=start --noprimary
/sbin/cluster/utils/drbd_tool --application apache --action=start
/sbin/cluster/utils/drbd_tool --application apache --action=mount

Following any changes run:

/sbin/cluster/utils/drbd_tool --application apache --action=unmount
/sbin/cluster/utils/drbd_tool --application apache --action=down
ssh remote /sbin/cluster/utils/drbd_tool --application apache \
 --action=down

Ø Change local file systems and force synchronisation
The alternative approach, which is stongly discouraged, is to mount he file system directly.
For example:

mount -t jfs /dev/app01vg/lv01 /apache

In such cases follownig the change the file system should be unmounted and a complete
synchronisation forced:

umount /apache
clbuildapp --application apache --verbose --sync --force --forcesync

The “--forcesync” is absolutely necessary to ensure the local file system contents overwrite
the remote one - since DRBD is unaware of the changes the administrator will have made to
the local copy.

However before attempting to use either of the above options the administrator is encourage to
use the preferred approach - via the “--force” option to the “clstartapp” command to force the
application to start if possible, make the alterations, and then force it to stop. These commands
work in many cases, even if only one node is available, or no cluster daemos are currently
running.

8.7 Understanding Application Resources
When a package is built or checked the resource files are called into play. It should be noted
that if the package has any volume groups, (these actually optional), then network ports, and
DRBDdevices will be allocated during the creation of the package, (more accurately during the
“build” stage).

If all resources have been allocated correctly the following file will also have been created on
both nodes:

/etc/cluster/.resources/fsmap/application

This file is used to provide information on file system types, mount points, mount options and
logical volumes for all files in the package. It also contains the current size of the logical volume
(to track changes to volumes, see later in the document for details). It is created first on the local
node and then copied to the remote node during the application build process described
previously.

The format of the entry on the “fsmap” directory is as follows:

<Volume group>:<Logical Volume>:<Mount Point>:<fs type>:<mount options>:Size

Page 66

 Linuxha.net Administrator’s Reference

For example you might get the following typically:

app01vg:clcst:/cluster/control/myapp:reiserfs:ro:10240
app01vg:home:/myapp/home:ext3:data=ordered:20480
app01vg:data:/myapp/data:reiserfs:rw,notail:102400

Notice that this information is necessary to both “fsck” and “mount” the file systems when they
are used by the cluster – though this information is generated during the build and can not be
assumed. This means that changing the file systems in the cluster does require some
reconfiguration - though the standard “clbuildapp” utility typically caters automatically with
situations when this file is required to change.

If the “fsmap” file for an application does not exist, then the “application” has failed to build
successfully. The reason for this will have been shown during the build phase previously
described. Without this file, the application can not be started under Linuxha.net.

Page 67

 Linuxha.net Administrator’s Reference

9 Application Configuration and Monitoring
As stated in the introduction it is important that changes to the state of the cluster and
application and monitored and reacted to - otherwise the purpose of the clustered software is
called into question! Monitoring takes place via the following mechanisms:

Ø Cluster Daemons
Ø Cluster Network Daemon
Ø Application “Lems” Daemon

From the administrator’s viewpoint the key requirement for monitoring the application is ensuring
that a configuration for “Lems” is suitable for that environment. This section covers a basic
implementation of a sample “Lems” session for the sample “Apache” configuration, for more
detailed technical implementation information, please see the section beginning on page .

However before discussing any monitoring the scripts necessary to start and stop the
application must be covered in a little more detail. In the “appconf.xml” file shown earlier the
“application” section describes the commands used:

 <application>
 <startscript>/apache/admin/scripts/startapp</startscript>
 <stopscript>/apache/admin/scripts/shutdown</stopscript>
 <maxstoptime>10</maxstoptime>
 <maxstarttime>20</maxstarttime>
 </application>

Notice that these scripts can exist outside of the replicated file systems, or actually as part of the
file systems covered by the cluster. Where they are kept depends on the administrator and the
application being clustered. Some applications expect files to exist in certain directories, such as
“/etc”. In such cases a replicated location is not feasible. However with a replicated solution only
a single copy is kept – preventing problems with nodes having different scripts, which might
result in subtle errors.

These scripts are usually simple shell scripts, though can be as complex as desired. The exit
code of the “start” script is important – it must be 0 if the application has started successfully. If
this is not the case then the cluster software takes the result as a failure and the start up of the
application will be aborted.

The contents of the “start” script in this instance is very basic –just a call to the standard
“apachectl” script - which is expected to be in the same directory, rather than a more usual
location.

#!/bin/bash

/apache/admin/scripts/apachectl start
exit $?

Of course stopping is just as straightforward – the “shutdown” script is basically the following:

#!/bin/bash

/apache/admin/scripts/apachectl stop
exit $?

9.1 Start/Stop Script Interface Requirements
The start and stop script are not called with any arguments by default. If arguments are required
then they should be added directly after the command in the XML configuration file for the
application.

To expand on the information previously given the following table should be considered when
setting the return code for either script.

Page 68

 Linuxha.net Administrator’s Reference

Script Return
Code

Consequence

Start 0 The application is thought to have been started successfully, any
remaining steps are performed and the application successfully starts
under Linuxha.net.

1 The application start-up has failed. If a forced application start-up is not
in effect then the start-up of the application will fail. For a forced start-up
a warning is issued, though the process of making the application start
under Linuxha.net will continue.

Stop 0 The shut-down of the application silently continues.

1 Am warning is given, but the application shut-down continues.

When stopping the application the return code is recorded if non-zero in output, but no other
actions take place. This is because the shut-down will ensure any processes using the clustered
file systems are killed anyway.

The other important aspect when writing or using scripts is to ensure the start and stop times
are configured to allow the script to do what it needs to do under normal working conditions.
Initially it is recommended that the start and stop times are set very high so they will never be
crossed. The administrator should then refine them (reducing them in most cases), to be 50% -
100% longer than the application typically takes to start or stop.

This is because once this time is exceeded the application start-up and shut-down of the
application perform the following actions:

Ø A warning is issued after 1/2 of the available time to start or stop the application has
elapsed.

Ø A warning is issued again at the limit of the time configured to start/stop, at this point a HUP
signal is sent to the process that was starting/stopping the application.

Ø If the application does not start/stop for 5 seconds after sending the HUP signal then a KILL
signal is sent, effectively stopping the application start-up or shutdown.

Whether shutting the application down or starting it up at this point is irrevevant; Linuxha.net will
unmounted the replicated file systems for the application, killing off any processes using them if
necessary.

9.2 Providing a “Lems” Monitor for the application
Now that the application environment is ready the administrator must create a “Lems” session
which detects and responds to events that affect just this application, or are most relevant for
this application. Detailed information on using Lems is found later in the document (see page
111). Also technical configuration information on Lems can be found starting on page 174.

For the sample “apache” application (also distributed as part of the “linuxha_apache” package),
the administrator will find the following file:

/etc/cluster/apache/lems.local.xml

The contents of this file are mainly a series of “check” entries similar to the following:

<check>
 <name>ip</name>
 <type>internal</type>
 <module>ip_module test01</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="RUN move_ip"/>
 <action rc="2" action="STOP"/>
 </action_list>
 </check>

Page 69

 Linuxha.net Administrator’s Reference

For comprehension of the environment the the only entry that should currently concern the
administrator is the one with a “name” element of “httpd”, which will appear as follows:

 <check>
 <name>httpd</name>
 <type>internal</type>
 <module>procmon /etc/cluster/apache/httpd.xml</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="STOP"/>
 <action rc="2" action="FAILOVER"/>
 </action_list>
 </check>

The “module” setting for this entry indicates that a module called “procmon” will be called every
10 seconds. The “procmon” module is used for process monitoring and typically at least one
entry similar to the above will be present in a Lems configuration file for a clustered application
– assuming the administrator wishes to include application level checking / re-start / failover
functions. This is not strictly necessary, but is sensible for most applications that are clustered.

9.3 Sample Process Monitor Implementation
Lems works on the principal of modules - each module performs a different type of check (for
example the configuration shown in the previous section made use of “procmon” - the process
monitor module).

Several “Lems” configuration modules are provided as standard to handle many of the “system”
related activities that may impact the availability of the application or cluster. The ones that are
“cluster-wide” such as monitoring swap space are only really suitable for environments that have
a limited number of applications - and in such circumstances if such a monitor is required to be
run, it should only be run for a minimum number of applications to reduce system overhead.

For the sample Apache application, the process monitor entry in Lems requires a simple
configuration file to be built describing the processes to monitor and actions to take. This XML
file is typically placed in the following directory on each node in the cluster:

/etc/cluster/application/name.xml

The name of the configuration file is left to the administrator, though in this example it is called
“httpd.xml” and has the following contents:

<?xml version="1.0"?>
<procmon>
 <global>
 <logdir>/var/log/cluster</logdir>
 <restarts>3</restarts>
 <resetwindow>3600</resetwindow>
 <restartcmd>/apache/admin/scripts/restart</restartcmd>
 </global>
 <process>
 <label>Web Server</label>
 <user>nobody</user>
 <process_string>httpd</process_string>
 <min_count>1</min_count>
 <max_count>10</max_count>
 </process>
</procmon>

Full details on the meanings of these fields are shown later when the “Lems” environment is
described in much greater detail (starting on page 111). However in essence the above will run
the “restart” script for the application if less than one process or more than 10 processes for the
user “nobody” contain the string “httpd” are not found or found respectively.

Page 70

 Linuxha.net Administrator’s Reference

The other entries in the sample configuration require no customisation or further configuration
files. The administrator needs take no further action – the Lems daemon for a particular
application is started by the Cluster daemon when a package is started, and stopped when it is
no longer required.

The cluster daemons also check to ensure that these monitors continue to run, and if the
process dies it is re-started.

The administrator is responsible for checking the cluster configuration files for excessive restarts
of the Lems daemon for an application. This would indicate an underlying issue with either Lems
or the configuration for that application which should be investigated as soon as possible.

The Lems daemon for a particular application typically is configured to run in verbose mode,
and will use the following log file typically4:

/var/log/cluster/lems/lems-application.log

This log file should be first as the first action if there are any problems running a particular
application. Typically this log records significant information, though it does require a “verbosity”
setting – though this is enabled by default.

Alternatively if is possible to run the command in “check” mode from the command line,
(assuming the package is not running), with a command such as:

lems.pl --application apache --config \
 /etc/cluster/apache/lems.local.xml --verbose --check

The output of this command would look something similar to the following:

INFO 12/06/2005 22:58:06 Using modules from : /sbin/cluster/lems/modules
INFO 12/06/2005 22:58:06 Using programs from : /sbin/cluster/lems/programs
INFO 12/06/2005 22:58:06 Writing logs to : /var/log/cluster/lems
INFO 12/06/2005 22:58:06 Validating port not open locally...
INFO 12/06/2005 22:58:06 Validating port not open on sl4s2...
INFO 12/06/2005 22:58:06 No clash for application samba - uses port 8801 not 8800.
INFO 12/06/2005 22:58:06 Listening on port : 8800
INFO 12/06/2005 22:58:06 Global initialisation complete.
INFO 12/06/2005 22:58:06 Started local server on port 8800
INFO 12/06/2005 22:58:06 Validating monitor entry fsmonitor...
INFO 12/06/2005 22:58:06 Validated monitor entry fsmonitor successfully.
INFO 12/06/2005 22:58:06 Validating monitor entry httpd...
INFO 12/06/2005 22:58:06 Validated monitor entry httpd successfully.
INFO 12/06/2005 22:58:06 Validating monitor entry flag_check...
INFO 12/06/2005 22:58:06 Validated monitor entry flag_check successfully.
INFO 12/06/2005 22:58:06 Check mode - transferring validated config to remote node.
INFO 12/06/2005 22:58:06 Configuration transferred successfully.
INFO 12/06/2005 22:58:06 Calculated a check interval of 2.5 seconds.

If the check mode exits with a non-zero return code or output similar to the above then the
configuration is valid – if there is a problem with any component in the specified application
configuration a message should indicate the problem, allowing a speedy resolution.

Much more detailed information on the various Lems monitors which are typically used can be
found in the section starting on page 111.

4Though it should be noted that this location can be overridden by changing the setting for the “logs” value in the
Lems configuration file for an application if desired.

Page 71

 Linuxha.net Administrator’s Reference

10 Starting the Cluster
Previously the quickest mention to start the cluster has been shown briefly. This section
describes in more detail how the cluster daemon, (“cldaemon”) can be started and stopped to
manage the cluster, from the point of view of the cluster administrator. For more information on
the detailed technical implementation, please see the section beginning on page 190.

The cluster daemon, inter-changeably referred to as “cldaemon”, is the crux of the cluster
environment, since it handles fail-over of applications (amongst other things) – thus it needs to
be running before you are able to start any applications5.

The daemon can be started in two different ways; either directly on the command or via a high-
level command known as “clform” (as shown previously).

This section describes the necessary steps of calling the “cldaemon” process directly to “form”
the cluster. This is useful when the administrator is new to the product since it gives an insight
into how exactly the cluster goes about the process of “forming a cluster”.

However once familar with the workings of the cluster use of the simpler “clform” command is
preferred. The “clform” utility is described following the use of “cldaemon” directly on the
command line.

Typically the cluster would be formed when the nodes are booted – though if they are started at
different times, then the cluster might start with only a single node in it. Details on automatic
cluster formation on reboot and the options to consider are detailed on page 165. The current
recommendation is that formation of the cluster should be a manual process rather than
performed as part of the boot sequence of the servers.

The above is particularly important if applications are configuration to automatically start
following the reboot. This is because if both nodes have failed at the same time the
administrator should consider carefully on which nodes to form the cluster - ideally they should
use the nodes last used for an application (if it was running prior to the reboot / machine failure).

10.1 Forming a Cluster using “cldaemon”
If the administrator has access to several windows, one particularly useful test is to run the
cluster daemons in the “foreground”, at least for a little while. If the cluster is running it should be
stopped before continuing with the commands here. To stop the cluster run:

clhalt --force

Now to run the cluster in the foreground in the current window, use the following commands on
both machines, starting the commands around the same time:

cldaemon --form --verbose --file -

The above options indicate the cluster should be formed, with verbose logging, using standard
output as the log file. Many more options are supported -, please see the documentation
regarding the cluster daemon starting on page 190 for more information.

Since the above command will lock the terminal in question, pleas ensure another window is
available on each node to run further commands.

5 This is not totally true - Linuxha.net does support starting applications without the cluster daemon for maintanence
and disaster recovery handling.

Page 72

 Linuxha.net Administrator’s Reference

This is the output from the primary node, (the first in the configuration file) whilst the cluster
forms:

INFO 07/06/2005 06:24:21 Global section configuration validation complete
ERROR 07/06/2005 06:24:21 Unable to read from lock daemon.
INFO 07/06/2005 06:24:21 Locking daemon is not running - will attempt to start.
INFO 07/06/2005 06:24:23 Successfully started locking daemon.
INFO 07/06/2005 06:24:23 Network daemon is not running - will attempt to start.
INFO 07/06/2005 06:24:24 Successfully started network daemon.
INFO 07/06/2005 06:24:24 Started local server on port 9900
INFO 07/06/2005 06:24:25 Ping of 192.168.100.34 OK (network drbd)!
INFO 07/06/2005 06:24:25 Found IP for remote server: 192.168.100.34
INFO 07/06/2005 06:24:25 Waiting to form cluster with remote node.
INFO 07/06/2005 06:24:27 Response to ECHO was FORMING (our state=FORMING)
INFO 07/06/2005 06:24:27 Response to ECHO was STARTING (our state=FORMING)
INFO 07/06/2005 06:24:27 Response to ECHO was UP (our state=FORMING)
INFO 07/06/2005 06:24:27 Both nodes agree UP
ERROR 07/06/2005 06:24:29 Time difference between nodes is >10 minutes - require --
force to start!

The above output shows a common problem – the times used on the two nodes should be as
close as possible - the above aborted the formation of the cluster because the time difference
was too great - even though the cluster managed to form successfully.
After correcting the time the out will appear similar to the following:

INFO 06/06/2005 23:14:16 Added request ISVALID (Check Application valid nodes).
INFO 06/06/2005 23:14:16 Added request PNODE (Get application preferred node).
INFO 06/06/2005 23:14:16 Added request DEPENDS_ON (Get application dependencies).
INFO 06/06/2005 23:14:16 Added request AUTOSTARTLIST (Get list of auto-start
applications).
INFO 06/06/2005 23:14:16 Added request STOPPING_APP (Change Application state to
STOPPING).
INFO 06/06/2005 23:14:16 Added request RECONFIGURE (Rereconfigure running cluster
daemon).
WARN 06/06/2005 23:14:16 No validated build for samba - not registering with cluster.
INFO 06/06/2005 23:14:16 Validated Build for apache is valid - will register with
cluster.
INFO 06/06/2005 23:14:16 Application apache has been registered with the cluster
daemons

Please notice that the application that was created previously has been registered with the
cluster - this means that a valid, checked configuration file for that application was found and
that the application would be recognised as valid by the cluster.

In the above configuration a build an a “samba” application is under way – though the cluster
does not register it yet since it does not match a valid checksum for the application.

At this point the cluster daemon processes are running, and notice that they have also started
the lock daemons and network daemons on each node as well. The main cluster daemon will
continue to do so until killed off. Since they are running attached to terminals terminate these
sessions and instead run:

cldaemon --form --verbose --detach

This will use the default log file to generate output to and run the program as a true daemon.
You can check to see if the cluster is running by issuing a command such as:

ps -ef | grep clustername

You would expect to see the following on both nodes if the cluster is running:

root 3496 1 0 23:12 ? 00:00:00 cllockd-sl4cluster
root 3498 1 0 23:12 ? 00:00:00 clnetd-sl4cluster
root 3506 1 2 23:16 ? 00:00:00 cldaemon-sl4cluster

The processes started have their names changed to include the cluster name (as configured in
the “name” element in the “global” section the clconf.xml file). This can then be used by the
administrator to monitor/kill Linuxha.net system processes if so desired. However the

Page 73

 Linuxha.net Administrator’s Reference

administrator should be aware that Linuxha.net provides utilities for direct management of all
daemon processes without the administrator requiring to know the relevant process ID’s.

Page 74

 Linuxha.net Administrator’s Reference

10.1.1 When to use force to form a cluster

The “--force” option performs two different actions, but as the name indicates the purpose is to
ensure that a cluster is formed, even if by default perhaps it should not be. The two purposes of
using “--force” when attempting to start the cluster are:

• To overcome a too large a time difference. If the difference between the system times on
both machines is over 10 minutes out then the cluster will abort with a warning. This is
because accurate time is necessary since application start times are recorded and used
during the process of application start-up under certain operating conditions.

• To form the cluster both machines need to agree on the status – a certain period of time is
allotted before giving up on the other server as being dead. For reasons of data sanity the
cluster does not form in such cases unless forced to.

10.2 How a Cluster is Joined
If a node has died or the cluster was started without it (using the “--force” option), then it is
possible for that node to become part of the running cluster - this is known as “joining” the
cluster. To attempt to get the “cldaemon” on the current machine to attempt to join an already
running cluster on the other server, use the following command:

cldaemon --join --detach --verbose

This might produce something similar to the following in the log file in this instance:

INFO 06/06/2005 23:18:56 Global section configuration validation complete
INFO 06/06/2005 23:18:56 Locking daemon already appears to be running.
INFO 06/06/2005 23:18:56 Network daemon already appears to be running.
INFO 06/06/2005 23:18:56 Started local server on port 9900
INFO 06/06/2005 23:18:56 Ping of 192.168.100.34 OK (network drbd)!
INFO 06/06/2005 23:18:56 Found IP for remote server: 192.168.100.34
INFO 06/06/2005 23:18:56 Waiting to join cluster with remote node.
INFO 06/06/2005 23:18:58 Registering new application: apache
INFO 06/06/2005 23:18:58 resp2=DOWN,.,.,0,1,sl4s1+sl4s2
INFO 06/06/2005 23:18:58 Setting valid nodes: sl4s1,sl4s2
INFO 06/06/2005 23:18:58 Added request STOP_NBD (Stop DRBD resources).
INFO 06/06/2005 23:18:58 Added request START_NBD (Start DRBD resources).
. . .
INFO 06/06/2005 23:18:58 Added request GETVALIDNODES (Get Application valid nodes).
INFO 06/06/2005 23:18:58 Added request SETVALIDNODES (Set Application valid nodes).
INFO 06/06/2005 23:18:58 Added request ISVALID (Check Application valid nodes).
INFO 06/06/2005 23:18:58 Added request PNODE (Get application preferred node).
INFO 06/06/2005 23:18:58 Added request DEPENDS_ON (Get application dependencies).
INFO 06/06/2005 23:18:58 Added request AUTOSTARTLIST (Get list of auto-start
applications).
INFO 06/06/2005 23:18:58 Added request STOPPING_APP (Change Application state to
STOPPING).
INFO 06/06/2005 23:18:58 Added request RECONFIGURE (Rereconfigure running cluster
daemon).
INFO 06/06/2005 23:18:58 Node sl4s1 has now joined the cluster

Joining the cluster has no impact to the applications currently running in the cluster – they will
continue to run. Any further applications you wish to start can now of course be started on either
node. If data replication resulted in Stale data (since the node in question actually crashed),
then joining the cluster will allow the data replication for any running application to be started
shortly.

10.3 Forming a Cluster using “clform”
Although calling the “cldaemon” directly is a supported method of forming (or joining) the cluster,
in practise it can become tiresome. To ensure the process of cluster formation is as
straightforward as possible the “clform” utility is provided.

This command offers a limited set of command line options, but provides enough functionality to
form the cluster under most circumstances. There are still occasions however when the

Page 75

 Linuxha.net Administrator’s Reference

“cldaemon” commands described previously must be resorted to due to the fine-grain control of
the cluster formation process that is available.

By default the utility does not attempt to force the cluster and of course uses the default time out
when forming a cluster. Both daemons are run detached in verbose logging mode. Once the
cluster forms it will return to the command line with a status of 0.

If an error occurs a non-zero returned code is specified and where possible an error message
will be shown to the standard error device. If no error does appear than check the log file for the
cluster. As previously mentioned the log file will have the following name:

/var/log/cluster/cldaemon-clustername.log

The “clform” command is explained in more detail, along with supported command line options,
starting on page 141.

It should be noted now that “clform” is also able to start cluster applications automatically as part
of the process. This does require additional attributes to be defined for the application, and can
be particularly useful in more complex configurations.

Finally to actually form the cluster using the “clform” command, run the following on either one of
the nodes:

clform --noapps

In this instance the “--noapps” argument has been given to ensure that no applications are
started. The output generated is much more simplified compared to using “cldaemon” directly:

INFO 06/06/2005 23:39:00 Validated checksum for cluster configuration
INFO 06/06/2005 23:39:00 SSH communication to sl4s2 will be:
INFO 06/06/2005 23:39:00 192.168.100.34 ("drbd" network)
INFO 06/06/2005 23:39:00 Checking that the cluster is not already running...
INFO 06/06/2005 23:39:00 *** ATTEMPTING TO FORM CLUSTER sl4cluster ***
INFO 06/06/2005 23:39:00 Starting cldaemon on sl4s1...
INFO 06/06/2005 23:39:01 Starting cldaemon on sl4s2...
INFO 06/06/2005 23:39:02 Waiting for cluster to form...
INFO 06/06/2005 23:39:06 Cluster sl4cluster started successfully.

10.4 Forming a Cluster on machine boot
Before describing the steps necessary to form a cluster on machine boot there are several
important questions that require consideration;

• Should the cluster form if only one machine is available at the end of the time-out interval?
• Should the formation of the cluster occur as a foreground task or background “init” task?
• If the other node is already running the cluster services should the new node automatically

join the existing cluster?
• Should auto-start applications be automatically started?
• Should the default time-out specified in the cluster configuration be used?

If cluster formation is required at machine start-up then Linuxha.net provides the following
command to build a facility tailored for the start-up of the cluster at machine boot time:

/sbin/cluster/tools/clstartup

To make use of this facility a configuration must be present otherwise calling the command will
fail. The configuration file necessary has the following path and must be present on both nodes:

/etc/cluster/clstartup.xml

Page 76

 Linuxha.net Administrator’s Reference

A typical example of this XML file would look similar to the following:

<?xml version="1.0" standalone="yes"?>
<clstartup_config>
 <allow_single_node>yes</allow_single_node>
 <background_startup>no</background_startup>
 <join_existing_cluster>no</join_existing_cluster>
 <autostart_apps>yes</autostart_apps>
 <timeout>120</timeout>
</clstartup_config>

The five settings correspond to the questions mentioned on the previous page. The table below
describes the options in a little more detail.

Setting Purpose
allow_single_node Should be set to “yes” or “no”.

Ø yes - if after the time-out period the node in question is not
able to communicate with the other node a single node
cluster is formed.

Ø no - the cluster formation fails if both nodes are not present
to create a cluster when the time-out period expires.

background_startup Should be set to “yes” or “no”.
Ø yes - the formation of the cluster is handled as a

background task allowing the rest of the run-control scripts
to continue processing.

Ø no - foreground the task - all remaining run-control scripts
wait for the cluster to form, or the time-out period to expire6.

join_existing_cluster Should be set to “yes” or “no”.
Ø yes - if the cluster is already formed and this command is

run then this node attempts to join it.
Ø no - if the cluster is already formed then do not attempt to

join it.
autostart_apps Should be set to “yes” or “no”.

Ø yes - if the cluster is successfully formed any application
that has an “autostart” attribute set to “yes” is started in the
cluster - along with any dependencies if required.

Ø no - no applications are automatically started.
timeout If present this setting is given in seconds and overrides that

defined in the cluster configuration setting “timings.clusterform”,
(which if not present defaults to 300).

Since the background start-up is not yet supported as of version 1.0.0 it is recommended that if
added to run-control scripts it is added after the “getty” process is started (otherwise console log
could be delayed by many minutes).

The above point is particularly important since if there is a problem with the configuration it will
allow the administrator to log in rather than waiting for the time-out period to expire.

6 In the current version 1.0.0 this setting is currently ignored - all processing occurs in the background.

Page 77

 Linuxha.net Administrator’s Reference

11 Managing Applications in the Cluster

11.1 Starting Applications with “clstartapp”
Once the cluster daemons have been started the next step is to start the application (or
applications) in the cluster. Each application must be started separately by running the
“clstartapp” command. This command takes various options but typically just needs the name of
the application to start:

clstartapp --application apache

The above command would silently start the “apache” application on the current node. The
command should be run on the node on which the application is to be executed on – if this
particular node is not suitable (for various reasons described later) the start-up of the application
will fail. Later a more straightforward command will be described for handling applications that
takes more account of the current cluster state.

A more common start-up command might be something similar to the following:

clstartapp --application apache --verbose --file -

In the above example the “--file” option has been used with “-” to indicate that the default
location for sending progress messages to when starting the application in verbose mode
should be over-ridden and instead make use of Standard Output.

Running the above commands assumes the cluster is running in a particular state:

[1] The cluster daemons are running.
[2] A valid copy of the data is available locally, or via the DRBD network to the remote system.
[3] The current node is actually running as part of the cluster.
[4] The specified application is configured and built correctly, but no currently running in the

cluster.

If all the above are true, then the clustered application should be able to start, and since the
command has been run in verbose mode, output similar to the following should be produced:

INFO 12/06/2005 23:03:22 Validated checksum for cluster configuration
INFO 12/06/2005 23:03:22 Checked that node names resolve to IP addresses
INFO 12/06/2005 23:03:22 Validated Build run has completed against this
configuration.
INFO 12/06/2005 23:03:22 Maximum start-up time for application: 20
INFO 12/06/2005 23:03:22 drbd kernel module loaded already on sl4s1
INFO 12/06/2005 23:03:22 drbd kernel module loaded already on 192.168.100.34
INFO 12/06/2005 23:03:23 Local DRBD devices started successfully.
INFO 12/06/2005 23:03:23 Ssh communication to sl4s2 via 192.168.100.34.
INFO 12/06/2005 23:03:23 DRBD: Skipping ENBD decisioning and relying on meta data...
INFO 12/06/2005 23:03:23 Attempting to start DRBD services on sl4s2.
INFO 12/06/2005 23:03:24 DRBD devices started successfully on sl4s2.
INFO 12/06/2005 23:03:24 Validated consistency of available data for DRBD.
INFO 12/06/2005 23:03:24 Both data copies believed good.
INFO 12/06/2005 23:03:24 Locking will be attempted via port 9849
INFO 12/06/2005 23:03:24 Successfully connected to lock server.
INFO 12/06/2005 23:03:24 Attempting to register application apache as starting...
INFO 12/06/2005 23:03:24 Application registered successfully as starting.
INFO 12/06/2005 23:03:24 Checking for existing primary application IP addresses...
INFO 12/06/2005 23:03:26 No application primary IP addresses found.
INFO 12/06/2005 23:03:26 Attempt to get lock for NBD_CLIENT
INFO 12/06/2005 23:03:26 Attempting to make local DRBD devices primary...
INFO 12/06/2005 23:03:27 Attempt to release lock for NBD_CLIENT
INFO 12/06/2005 23:03:27 All local DRBD now primary.
INFO 12/06/2005 23:03:27 Running "/sbin/fsck -t ext3 -a /dev/drbd0"...
INFO 12/06/2005 23:03:27 Running "PATH=$PATH:/sbin:/bin:/usr/sbin; mount -t ext3 -o
rw /dev/drbd0 /apache"...
INFO 12/06/2005 23:03:27 File systems mounted on DRBD devices.
INFO 12/06/2005 23:03:27 Attempt to get lock for NET
INFO 12/06/2005 23:03:27 Configuring 192.168.0.102: ifconfig eth0:1 inet
192.168.0.102

Page 78

 Linuxha.net Administrator’s Reference

INFO 12/06/2005 23:03:27 Sending Builtin Gratuitous arp for eth0:1
INFO 12/06/2005 23:03:27 Configuring 192.168.0.103: ifconfig eth0:2 inet
192.168.0.103
INFO 12/06/2005 23:03:27 Sending Builtin Gratuitous arp for eth0:2
INFO 12/06/2005 23:03:27 Attempt to release lock for NET
INFO 12/06/2005 23:03:30 Applications start completed successfully
Application apache started successfully

Of course if the application is already running in the cluster a suitable error message will be
produced, as the following example shows:

INFO 12/06/2005 23:09:05 Validated checksum for cluster configuration
INFO 12/06/2005 23:09:05 Checked that node names resolve to IP addresses
INFO 12/06/2005 23:09:05 Validated Build run has completed against this
configuration.
INFO 12/06/2005 23:09:05 Maximum start-up time for application: 20
INFO 12/06/2005 23:09:05 drbd kernel module loaded already on sl4s1
INFO 12/06/2005 23:09:06 drbd kernel module loaded already on 192.168.100.34
INFO 12/06/2005 23:09:06 Local DRBD devices started successfully.
INFO 12/06/2005 23:09:06 Ssh communication to sl4s2 via 192.168.100.34.
INFO 12/06/2005 23:09:06 DRBD: Skipping ENBD decisioning and relying on meta data...
INFO 12/06/2005 23:09:06 Attempting to start DRBD services on sl4s2.
INFO 12/06/2005 23:09:07 DRBD devices started successfully on sl4s2.
INFO 12/06/2005 23:09:07 Validated consistency of available data for DRBD.
INFO 12/06/2005 23:09:07 Both data copies believed good.
INFO 12/06/2005 23:09:07 Locking will be attempted via port 9849
INFO 12/06/2005 23:09:07 Successfully connected to lock server.
INFO 12/06/2005 23:09:07 Attempting to register application apache as starting...
ERROR 12/06/2005 23:09:07 Application apache is already running!

The log messages shown previously are only relevant for a cluster running in an optimal
condition. The more interesting/important output occurs when the cluster is not running in such
a manner (for example when both nodes are not available, or certain network connectivity is not
available). For more information on these considerations see the technical information starting
on page 165.

Please note that the default file for the output if running “clstartapp” in verbose mode is the
following:

/var/log/cluster/clstart.application.log

The start script specified to run the programs/services for this particular application will log
output to the following destination, (unless the script redirects output and errors elsewhere):

/var/log/cluster/application.start.log

Note that the time taken to start an application can vary greatly depending on the performance
of the nodes, the status of the cluster, as well as the number of file systems required to mount,
their size and type.

11.2 Some typical Error Conditions when Starting Applications
As indicate a later section in this document can be referred to for detailed implementation
information regarding the “clstartapp” command. However this is really aimed at developers, and
probably contains more information that system administrator care to know. Hence this section
describes some of the more common failure conditions that might occur when starting the
application. For other failure conditions please see the documentation starting on page .

1. Software indicates an incorrect Checksum has been found
If the application has previously been built correctly then this error indicates that the
configuration file has been changed, and the “clbuildapp” stages re-run. Details on how,
why and the effects of running “clbuildapp” when a application already exists can be found
later in this document. The alternative approach, to be used with extreme caution, is to add
the “--nochecksums” option to the command line to turn off configuration file validity
checking.

Page 79

 Linuxha.net Administrator’s Reference

2. Specified application is not registered with the cluster
This occurs because the application specified either does not exist, or more likely it has not
yet been successfully built. In such cases the error might be indicated with a message
similar to the following:

ERROR 30/01/2004 22:32:22 Could not find appconf.xml for fred

In this case it is recommended that the application is built correctly using the “clbuildapp”
before continuing.

1. Application exists, but indicates “--build” stage needs running.
If an error message appears similar to the one below it indicates that either as it states the
“--build” stage for the application has not been completed using the “clbuildapp” utility, or the
configuration file for the application has been altered, but the build stage has not been re-
run. This is necessary to ensure the configuration is valid.

ERROR 30/01/2004 22:37:27
ERROR 30/01/2004 22:37:27 The configuration file for this application has been altered
ERROR 30/01/2004 22:37:27 but the --build stage has not yet been rerun. Do that first
ERROR 30/01/2004 22:37:27 before running with the --sync option.

1. Application will not start on node
If this occurs and the previous two conditions are not true then it indicates that the node is
probably not running a cluster daemon. This is typically indicated by the following lines
appearing in the log file, or to the terminal:

WARN 31/01/2004 18:15:51 Unable to register application (not response)
ERROR 31/01/2004 18:15:51 Unable to contact local cluster daemon.
ERROR 31/01/2004 18:15:51 Will not start the application due to the risk of data
corruption.

If necessary it is possible to start an application on a node without a cluster daemon running
– though this is not recommended. To proceed with a startup with the daemon simply add
the “--force” option to the command line.

2. Application does not start, even when the “--force” option is used.
This will occur because of either of the following reasons; either one of the “primary”
application IP addresses is not unique; or the specified application is running elsewhere
using this IP address. In both cases you will see the following message in the log file:

ERROR 31/01/2004 21:58:39 It appears that the IP address for this application is in
use.
ERROR 31/01/2004 21:58:39 Either the application is running already, or the configured
ERROR 31/01/2004 21:58:39 IP address is not suitable.

3. Software indicates an unknown state
It is still theorectically possible that the cluster is in such a state that the software will refuse
to start the application. In such cases the recommended resolution is to perform the “--sync”
option of the “clbuildapp” utility from the node that you know has the copy of data that is to
be used. After this has been completed attempt to start the application again.

4. DRBD Device Errors
It is possible that the DRBD devices on the local machine where the application is to be
started will not start. (If the remote ones fail to start the application will start-up with stale
copies).

In these cases the problem is likely to be caused by one or more of the following conditions;

➢ Missing Device Files
The required entries in /dev do not exist currently. This is particularly possible if
further devices have been added to cluster and the rebuild has been been completed
correctly.

➢ Missing Kernel Module
This might occur if the server kernel has been upgraded and the DRBD module has

Page 80

 Linuxha.net Administrator’s Reference

not been recompiled.
➢ Mismatch in maximum devices supported

By default DRBD is configured to manage just two devices unless options are
specified during the module load. Hence it is possible that if the module has been
loaded manually that this number is lower than those device numbers configured by
Linuxha.net.

In this case the module should be unloaded with “rmmod” and the application startp-
up command tried again.

It is often useful to check the status of DRBD on a local host. This is done simply by:

cat /proc/drbd

5. The cluster configuration file does not exist
An error message of this nature occurs if you are attempting to start the application when no
actual cluster configuration seems present. The most likely cause of this problem is the
removal of the “/etc/cluster/clconf.xml” file which is required for the software to function.

6. Invalid permissions or status of “clconf.xml” file
For security reasons explained previously (the presence of the communication key), the
“/etc/cluster/clconf.xml” must have permissions “rw-------” (read/write by owner only), and
must be owned by “root”. If this is not the case the application will not try to make use of this
configuration file.

7. Invalid XML configuration file
If the XML parser is unable to read the configuration file for the application then the attempt
to start the application can not take place. Essential information for those new to XML can
be found starting on page .

8. Missing “.clbuild.md5” Configuration file
This file is generated when an application is built. Such files should not be removed from
the application configuration directory. If this file is missing for an application the “clbuildapp”
command must be re-run to regenerate it. The files are used to validate that the application
has been successfully configured and thus act as a further check to ensure a invalid
configuration is not made use of.

9. Configuration file for later software revision
The error typically occurs if the application believes that the version of the file is too new for
the installed version of the Linuxha.net software. Such errors can be overcome by checking
the “version” details of the application configuration, or upgrading to the latest required
revision of software.

10. Missing nodes or invalid nodes in cluster configuration file
This can only occur if the cluster configuration files and “.clbuild” files have been copied
from a currently running cluster to a machine that was not named as part of that cluster.
Please ensure that all cluster configuration steps using “clbuild” are repeated to ensure the
current cluster and application configurations are revalidated.

11. Status directory problems
As mentioned in previous sections the directory “/etc/cluster” contains sub-directories that
include resource and status information regarding the cluster. This directory should not be
modified or removed apart from by the tools provided as part of Linuxha.net. Errors of this
nature are typically caused by manipulation or removal of files or directories, without which
the cluster software can not function correctly.

12. Errors indicated during IP-level checking

Page 81

 Linuxha.net Administrator’s Reference

Sometimes it is possible to see errors similar to the following appear when trying to start an
application:

clstartapp when no interfaces for prod interface available (if running with ip
checking)

In such cases this occurs because the details in the IP check-list for the application are not
meeting the required pass percentage. If the IP addresses are valid, and the “ping”
command appears to work with them, consider the protocol specified for the “ping”. It is
likely to be UDP or TCP and in such cases you hosts may need explicit configuration in the
“/etc/inetd.conf”file or “/etc/xinetd.d/echo-udp” for example to ensure “echo” requests for this
protocol are actually enabled.

11.3 Checking Application Status
Assuming that any problems, (if there were any!) have been overcome the administrator next
will probably wish to validate the status of the cluster currently. Most cluster status checking can
be carried out using the “clstat” command. You can run it without arguments to get a summary
status:

clstat

In this case the output will appear similar to the following:

Cluster: sl4cluster - UP

 Node Status
 sl4s1 UP
 sl4s2 UP

 Application Node State Started Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:16 Running 0 Yes
 samba N/A DOWN N/A N/A N/A Yes

The output should mostly be self-explanatory - the exceptions being “Monitor”, “Stale” and “Fail-
over?” . These three fields are very important to the availability of the application and must be
understood.

Ø Monitor - This indicates whether a Lems daemon is running for the application and will
either be “Yes” if one is running otherwise “No” if not. If the application is not running that
this will show “N/A” instead, as indeed it will during application state transitions7.

Ø Stale - This indicates how many file systems are currently considered “stale” - that is the
data copies are not fully synchronised on the two nodes. Under normal conditions with will
be set to “0” otherwise if stale data does exist, it indicates the number of file systems
affected.

Ø Fail-over? - This indicates whether or not the software is configured to fail-over to the other
node if it is available.

The standard output generated by “clstat” gives a summary of the status of the cluster - more
information is available to the administrator via additional command line arguments, the most
common being “--application” to show more detail for the specified application:

clstat --application apache

7 A state-transition will occur when the application changines from STARTING to STARTED or from STOPPING to
STOPPED. This message may also appear for a short time when the cluster daemon is re-started (due to software
failure) on a node already running the application.

Page 82

 Linuxha.net Administrator’s Reference

The output generated will appear similar to the following:

Cluster: sl4cluster - UP

 Application Node State Runnnig Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:19 Running 0 Yes

 File Systems

 Mount Point Valid Type State % Complete Completion
 /apache both drbd Sync

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Running 3 0 N/A

 General Monitors

 Type Name Status
 Flag Check flag_check Running
 FS Monitor fsmonitor Running
 IP Monitor ipcheck Running

This output show details of the monitors and details of each file system that forms the particular
application.

The “IP Assignment” module is meant to be stopped under most circumstances since it is
responsible for moving the IP address for the application!

Each sub-section of the output generated will now be described separately. Again a full
understanding of this output is necessary if you are to manage the cluster software correctly.

11.3.1 The “File Systems” information

This section provides detailed information on the status of each file system that this particular
application includes. This information is virtually important since it indicates how available the
data is. Each column is now explained.

Ø Mount Point - The mount point of a particular file system. Previous versions of the software
displayed the underlying volume group and logical volume which was found to be less
useful for most administrators.

Ø Valid - Which copy of the data is currently valid. This will be either be “both”, “local” or
“remote”. Local and remote are based on the location of the application currently, “local”
obviously being the node on which is is currently running. Of course in most cases this
should be “both”!

Ø Type - For current versions of Linuxha.net this is always “drbd” - older versions would
indicate “fs1” or “raid1”.

Ø State - The synchronisation state of the local volume - can be “sync”, “syncing” or worst of
all “unsync”.

Ø % Complete - If the state is currently “syncing” then this is the current % complete of the
operation to synchronise the mirror copy is.

Ø Completion - An estimated duration from now when the synchronisation operation will
complete, (given in days, hours, minutes and seconds).

The “% Complete” and “Completion” are both estimates and will vary second to second based
on current operating conditions of both nodes, being particularly affected by other disk
utilisation.

If data synchronisation is required for an application then please be aware that all file systems
for an application will synchronise simultaneously. Later versions of Linuxha.net will support
user-defined prioritisation of this re-synchronisation - particularly useful in certain environments.

Page 83

 Linuxha.net Administrator’s Reference

11.3.2 The “Process Monitors” information

As shown previously if the user wishes to monitor the status of an application then typically one
or more process monitor entries will exist for an application. Each monitor will be given a
separate series of details under the following headings:

• Name - The name given to the process monitor in the Lems configuration file - user
definable, though should be a alphanumeric value without white space.

• Status - This will be either “running” or “stopped” indicating whether the monitor is currently
checking the processes or dormant.

• Restarts - The maximum number of restarts of the application that are configured into the
monitor before it indicates a fail-over to the other node should be attempted.

• Current - The current number of attempted fail-overs.
• Reset at - The “Current” number of attempted fail-overs is reset after a time-period - this is

the time at which the “current” setting will be automatically cleared back to zero.

11.3.3 The “General Monitors” information

There are several other monitors which take care of flags and network state functionality for the
application. Typically these are not managed by the user - for detailed information on the
purpose of these highly important monitors see the Lems technical information starting on page .

Page 84

 Linuxha.net Administrator’s Reference

The table below gives summary information regarding monitors typically used however:

Monitor Purpose

Flag Check Checks for the existence of certain files and if found deactivates specified
monitors, (good for maintenance scripts).

FS Monitor Monitor the synchronisation status of the file systems and re-synchronises
file systems when necessary.

IP Monitor Checks for the availability of the networking infrastructure by the use of
ICMP ping requests to list of hosts.

11.4 Stopping Applications
At some point it will obviously be necessary to take down an application. The “clhaltapp” utility is
provided for this purpose. This command should be run on the server which is currently hosting
the application.

It is typically run with the following format:

clhaltapp --application application --verbose

The output this generates in the log file would be similar to the following:

INFO 12/06/2005 23:39:48 Validated checksum for cluster configuration
INFO 12/06/2005 23:39:48 Checked that node names resolve to IP addresses
INFO 12/06/2005 23:39:48 Validated Build run has completed against this
configuration.
INFO 12/06/2005 23:39:48 Maximum shutdown time for application: 10
INFO 12/06/2005 23:39:48 Locking will be attempted via port 9849
INFO 12/06/2005 23:39:48 Successfully connected to lock server.
WARN 12/06/2005 23:39:48 Ssh communication to sl4s2 via 192.168.100.34.
INFO 12/06/2005 23:39:48 Locking will be attempted via port 9849
INFO 12/06/2005 23:39:48 Successfully connected to lock server.
INFO 12/06/2005 23:39:48 Lems Daemon aborted.
INFO 12/06/2005 23:39:48 Applications stop completed successfully
INFO 12/06/2005 23:39:48 Attempting un-mount of /apache...
INFO 12/06/2005 23:39:48 unmount failed with: 1
INFO 12/06/2005 23:39:50 unmount failed with: 1
INFO 12/06/2005 23:39:51 File system /apache un-mounted.
INFO 12/06/2005 23:39:51 Attempt to get lock for NET
INFO 12/06/2005 23:39:51 Removing 192.168.0.102: ifconfig eth0:1 down
INFO 12/06/2005 23:39:51 Removing 192.168.0.103: ifconfig eth0:2 down
INFO 12/06/2005 23:39:51 Attempt to release lock for NET
INFO 12/06/2005 23:39:51 Attempt to get lock for NBD_CLIENT
INFO 12/06/2005 23:39:51 Stopping all active DRBD connections on sl4s1.
INFO 12/06/2005 23:39:51 Attempt to release lock for NBD_CLIENT
INFO 12/06/2005 23:39:51 All active DRBD devices stopped locally.
INFO 12/06/2005 23:39:51 Attempt to get lock for NBD_SERVER
INFO 12/06/2005 23:39:51 Stopping all active DRBD devices on sl4s2.
INFO 12/06/2005 23:39:53 Attempt to release lock for NBD_SERVER
INFO 12/06/2005 23:39:53 All active DRBD devices stopped remotely.
Application apache shutdown successfully.

There are other command line options available which can be used for various purposes - see
the detailed technical documentation regarding starting and stopping applications beginning on
page 165.

In the above output noticed that the key part of shutting down the application quickly is ensuring
the “stop” script (if any has been specified - and it should be), quickly stops the application.
Even if this script fails to stop the application it will not cause the shut down of the application to
abort - though a failure will be noted.

Page 85

 Linuxha.net Administrator’s Reference

The default location for the output when running in verbose mode is:

/var/log/cluster/clhalt.application.log

For the application stop script the standard output and error are redirected to the following files
respectively:

/var/log/cluster/application.stop.log

and;

/var/log/cluster/application.stop.errlog

Page 86

 Linuxha.net Administrator’s Reference

11.5 Starting Applications (the easy way)
The “clstartapp” application is the lowest level of functionality that can be used to run an
application under Linuxha.net. However for large-scale deployments consisting of many
applications it does have some limitations, and hence the reason for the inclusion of the
“clrunapp” utility.

This command is essentially a wrapper for the “clstartapp” as shown previously. However it
provides a limited amount of intelligence to handle applications, which make it the best tool to
use in most cases. To use this utility simply run:

clrunapp --application apache

This will show output similar to the following:

INFO 12/06/2005 23:43:24 Validated cluster configuration.
INFO 12/06/2005 23:43:24 Validated application configuration.
INFO 12/06/2005 23:43:24 Successfully connected to cluster sl4cluster.
INFO 12/06/2005 23:43:24 Verified that application apache is registered.
INFO 12/06/2005 23:43:24 Current application state : DOWN
INFO 12/06/2005 23:43:24 Application apache depends on: <NONE>
INFO 12/06/2005 23:43:24 Application apache will be started on node sl4s1
INFO 12/06/2005 23:43:24 Starting apache using command:
INFO 12/06/2005 23:43:24 /sbin/cluster/clstartapp --application apache --maxdelay 30
--verbose
INFO 12/06/2005 23:43:31 Application apache started after 7 seconds.

This tool checks the dependency information (if present) for the application and will only allow
the application to be started if all dependencies are met, (by default). There are some other
command line options available, (described on page 140), but typically these are not needed.

For a simple cluster configuration this will do nothing different from the “clstartapp” example
shown previously. It will start the application using verbose logging and return to the command
line once complete.

The major difference with this command compared with “clstartapp” is that it is node
independent – it might start the specified application locally or on the remote node depending on
the application characteristics and the state of the cluster generally.

To take full advantage of this command some additional attributes must be specified as part of
the application configuration file.

Information on the more advanced attributes from the application configuration files can be
found on page 140.

Page 87

 Linuxha.net Administrator’s Reference

11.6 Managing application Monitoring
One of the most common things activities that is undertaken whilst an application is running in a
cluster is to stop the monitoring of the application for a short period whilst non-standard
conditions are expected to prevail.

For example the administrator might wish to upgrade the “httpd” binary or modules, but does not
wish to fully stop the application; what is required is for the Lems system to ignore the process
monitor functionality for a short duration.

Fortunately such functionality is readily built in - notice that the output shown for the application
status on page 81 includes a “flag” module. With this module the administrator is able to control
whether other modules in Lems are active or not - even the “flag” module itself!

The flags module works as follows - note the name of the Lems module that monitoring is to be
suspended for, (under the Name heading for the process and general monitors). Then simply
create a file called the name of the monitor in the following directory:

/etc/cluster/application/flags

Using the example “apache” application, if you wish to stop the process monitor “httpd” then the
following command could be used:

touch /etc/cluster/apache/flags/httpd

This needs to be performed on the node which is currently running the application!

Shortly after touching the file please notice that the following message in the “Lems” log file for
the application will appear:

INFO 26/11/2003 22:25:23 Monitor flag_check returned: 1 => [STOP httpd;]
INFO 26/11/2003 22:25:23 Check httpd has been stopped, (RC=1)

This indicates that the flag has been noticed and the “flag_check” module told “Lems” to stop
monitoring “httpd”. This can be confirmed by checking the detailed status of the application.

clstat --application apache

Notice that the “Process Monitors” section of the output now looks like:

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Stopped 3 0 N/A

If you wish you can be now remove the flag file:

rm /etc/cluster/apache/flags/httpd

Now the “Lems” log will record the fact after a short delay:

INFO 26/11/2003 22:29:28 Monitor flag_check returned: 1 => [START httpd;]

Now the “Process Monitors” section of the application status will indicate that the monitor is
indeed running:

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Running 3 0 N/A

It should be noted that the “Lems” monitor actually does listen on a socket and will respond to
certain messages – a tool called “lemsctl” is available to interface to the daemon using this

Page 88

 Linuxha.net Administrator’s Reference

communication channel. Information on available uses of this utility can be found in the
Administration section of the document starting on page 174.

Page 89

 Linuxha.net Administrator’s Reference

12 Application Removal
Since the life time of the cluster might be longer than one or more of the applications that have
been defined for it, it is obviously necessary to provide a utility which can be used to remove the
application from the cluster - this facility is provided by the “clremoveapp” tool.

The first point to remember is that the application must not obviously be running! It will actually
check to ensure that this is the case - but the “--force” option can be used to override this!

It is also worth noting that the removal of the application from the cluster does not destroy the
data - the volume group configuration information on both machines will be left untouched -
allowing the administrator to add the application into the cluster later if necessary.

To remove the “apache” application from the cluster simply run the following command would be
used:

clremoveapp --application apache --verbose

If you do attempt to remove the application whilst it is still running you will get an error similar to
the following:

INFO 12/06/2005 23:57:55 Global section configuration validation complete
ERROR 12/06/2005 23:57:55 Daemon responded with status STARTED to application status
request!

The force option should only be used when as a last possible resort. Using this on a running
application may result in data loss.

The utility supports a very limited set of command line arguments - these being descried below -
importantly included one to back up the configuration of the cluster prior to any changes taking
place:

Flag Purpose
--application X The name of the application to remove from the cluster.

--verbose The utility will report informational messages as it goes about whatever
business it needs to. All lines will start with “INFO” and will appear on
the standard output device.

--nobackup Do not back up the contents of the configuration file - simply remove it
(on both hosts).

--backupdir F The directory to use to back up the configuration - must be specified
unless the previous option has been specified.

--file X This is used to specify the location which is used to store the verbose
output - it can be specified as “-” to indicate the current terminal /
Standard Output.

--force Force the removal of the application - this is needed if the cluster
daemons are not currently running.

--nochecksums Allow the removal of the application even if the configuration file for the
application does not match the validated checksums.

Once this utility has been run the specified application is no longer registered with the cluster.
Prior to removing the application the following series of checks are carried out to ensure it is
actually sensible to remove the application.

1. Check that the application does not appear to be running - this is only possible if the cluster
daemons are actually running at this time.

Page 90

 Linuxha.net Administrator’s Reference

2. Check that all file systems specified for the application are unmounted - on both nodes.
3. Check that both nodes agree that the specified application is defined - though do not need to

check that they agree on what resources are used.

Point 2 above is important - since it must confirm the status of the application on both nodes, an
application can only be removed once both nodes are available. Once all the specified checks
have been performed then the following series of actions are carried out to remove the definition
of the application:

Ø If the Cluster daemon is running then send it a message to ensure the application is
removed from the registered series of applications.

Ø Any file of the format “NN.<application>.vg.lv” in the local directory
“/etc/cluster/.resources/drbd” should be removed and replaced with a file called “NN.free”,
(so the device can be re-used by other applications).

Ø The above test/action should be repeated on the remote node.
Ø Any file of the format “NN.<application>.vg.lv” in the local directory

“/etc/cluster/.resources/ports” should be removed and replaced with a file called “NN.free”,
(so the port can be re-used by other applications).

Ø The above test/action should be repeated on the remote node.
Ø If the file “/etc/cluster/.resources/fsmap/<application>” exists locally it should be removed.
Ø The above test/action should be repeated on the remote node.
Ø If the directory “/etc/cluster/<application>” exists locally then it should be removed, along

with any files and sub-directories.
Ø The above test/action should be repeated on the remote node.

Once these steps have been carried out then the specified application will no longer exist as far
as the cluster is concerned. If the cluster is currently running then the application will
automatically be unregistered and will no longer appear in the output of the “clstat” utility.

When this command is carried out all of the files that defined the application, (such as the
“/etc/cluster/<application>/appconf.xml”) are archived by default. This is advisable - to turn this
feature off specify “--nobackup” on the command line.

Currently none of the default log files that this package used on either host are currently
removed - this must be performed manually by the administrator.

The output when an application is removed will appear similar to the following:

clremoveapp -A samba -V
INFO 13/06/2005 00:05:00 Global section configuration validation complete
INFO 13/06/2005 00:05:00 Confirmed samba is not currently running.
INFO 13/06/2005 00:05:00 Will use IP address 192.168.100.34 for communication to
sl4s2.
INFO 13/06/2005 00:05:00 Validated existance of /sbin/cluster/utils/rmdir on node
sl4s1
INFO 13/06/2005 00:05:00 Validated existance of /sbin/cluster/utils/rmdir on node
sl4s2
INFO 13/06/2005 00:05:00 Validated existance of /sbin/cluster/utils/mkdir on node
sl4s1
INFO 13/06/2005 00:05:01 Validated existance of /sbin/cluster/utils/mkdir on node
sl4s2
INFO 13/06/2005 00:05:01 Application unregistered from cluster.
INFO 13/06/2005 00:05:01 Attempting to backup cluster configuration on node sl4s1.
INFO 13/06/2005 00:05:01 Saved cluster configuation in 38243 bytes on node sl4s1
INFO 13/06/2005 00:05:01 Attempting to backup cluster configuration on node sl4s2.
INFO 13/06/2005 00:05:02 Saved cluster configuation in 11622 bytes on node sl4s2
INFO 13/06/2005 00:05:02 Successfully removed /etc/cluster/.status/samba/TIME (file)
from node sl4s1
INFO 13/06/2005 00:05:02 Successfully removed /etc/cluster/.status/samba/.
(directory) from node sl4s1
INFO 13/06/2005 00:05:03 Successfully removed /etc/cluster/.status/samba/.
(directory) from node sl4s2
INFO 13/06/2005 00:05:03 Successfully removed drbd resource
/etc/cluster/.resources/drbd/10.samba.sambavg.cfg (file) from node sl4s1
INFO 13/06/2005 00:05:03 Successfully removed drbd resource
/etc/cluster/.resources/drbd/11.samba.sambavg.logs (file) from node sl4s1

Page 91

 Linuxha.net Administrator’s Reference

INFO 13/06/2005 00:05:03 Successfully removed drbd resource
/etc/cluster/.resources/drbd/1.samba.sambavg.shares (file) from node sl4s1
INFO 13/06/2005 00:05:04 Successfully removed drbd resource
/etc/cluster/.resources/drbd/1.samba.sambavg.shares (file) from node sl4s2
INFO 13/06/2005 00:05:04 Successfully removed drbd resource
/etc/cluster/.resources/drbd/11.samba.sambavg.logs (file) from node sl4s2
INFO 13/06/2005 00:05:04 Successfully removed drbd resource
/etc/cluster/.resources/drbd/10.samba.sambavg.cfg (file) from node sl4s2
INFO 13/06/2005 00:05:04 Released port resource 9902 on node sl4s1
INFO 13/06/2005 00:05:04 Released port resource 9903 on node sl4s1
INFO 13/06/2005 00:05:04 Released port resource 9904 on node sl4s1
INFO 13/06/2005 00:05:04 Released port resource 9902 on node sl4s2
INFO 13/06/2005 00:05:05 Released port resource 9903 on node sl4s2
INFO 13/06/2005 00:05:05 Released port resource 9904 on node sl4s2
INFO 13/06/2005 00:05:05 Removed the fsmap entry from node sl4s1
INFO 13/06/2005 00:05:06 Removed the fsmap entry from node sl4s2
INFO 13/06/2005 00:05:06 Removing build checksums for samba
INFO 13/06/2005 00:05:06 Successfully removed application samba from the cluster.

Following this command the administrator is recommended to use the “clstat” to check to see if
the application has indeed been removed from the cluster:

clstat
Cluster: sl4cluster - UP

 Node Status
 sl4s1 UP
 sl4s2 UP

 Application Node State Started Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:23 Running 0 Yes

Page 92

 Linuxha.net Administrator’s Reference

13 Stopping the Cluster
Although stopping the cluster is very straightforward the administrator is encouraged to read this
section carefully. It contains information pertaining to the steps necessary to halt the cluster
“manually”.

13.1 Stopping the Cluster Manually
The steps necessary to perform a manual cluster shut-down are very straightforward and
consist of the following steps:

1. Stop all running applications
The first step is to stop all the running applications by issuing the relevant “clhaltapp”
commands, an example of which was shown on page 84.

2. Kill of the cluster daemons on each host
Once all running applications have been stopped the next step is to kill of the cluster
daemons running on each node. Firstly you need to know the name of your cluster – if you
do not then use the “clstat” command:

clstat

The output generated should be something like:

Cluster: sl4cluster - UP

 Node Status
 sl4s1 UP
 sl4s2 UP

 Application Node State Started Monitor Stale Fail-over?
 apache N/A DOWN N/A N/A N/A Yes

Once the name of the cluster is known - “sl4cluster” in this case, you need to look for a
processes with the suffix “-clustername” and remove it from both machines:

ps -ef | grep -- -sl4cluster
root 6190 1 0 Jun12 ? 00:00:28 cldaemon-sl4cluster
root 6193 1 0 Jun12 ? 00:00:00 cllockd-sl4cluster
root 6197 1 0 Jun12 ? 00:00:34 clnetd-sl4cluster
root 7511 7140 0 00:12 pts/1 00:00:00 grep -- -sl4cluster

Kill off this processes with the normal (default) signal (ignoring the “grep” command of
course):

kill 6190 6193 6197

This process should now be repeated on the other node. Once completed on both nodes use
the “clstat” utility again to ensure that the cluster is down:

clstat
ERROR 15/06/2005 02:17:42 Cluster sl4cluster is not running.

13.2 Stopping the Cluster Automatically
The utility called “clhalt” is provided for an even easier way to stop the cluster. If no applications
are running all cluster daemons can be stopped using the command:

clhalt

Page 93

 Linuxha.net Administrator’s Reference

This will communicate with both nodes (if connectivity between both exist), and stop all
daemons. This command will abort with an error if any applications are currently running. If no
applications are running the output shown will be:

INFO 15/06/2005 02:18:50 Validated checksum for cluster configuration.
INFO 15/06/2005 02:18:50 Attempting to halt cluster sl4cluster...
INFO 15/06/2005 02:18:50 Attempting to contact a cluster daemon...
INFO 15/06/2005 02:18:50 Connecting to cluster daemon via host sl4s1
INFO 15/06/2005 02:18:50 Asking cluster daemons to abort...
INFO 15/06/2005 02:18:53 Cluster daemons aborted - cluster sl4cluster is DOWN.

If any applicatinos are running the default action is to abort the process of shutting down the
cluster.

clhalt
INFO 15/06/2005 02:21:02 Validated checksum for cluster configuration.
INFO 15/06/2005 02:21:02 Attempting to halt cluster sl4cluster...
INFO 15/06/2005 02:21:02 Attempting to contact a cluster daemon...
INFO 15/06/2005 02:21:02 Connecting to cluster daemon via host sl4s1
ERROR 15/06/2005 02:21:02 Unable to stop cluster - 1 application is still running

So unless the applications have been stopped the cluster will not halt. However the utility also
supports a “--force” option which (by default) will stop any running applications and then shut the
cluster down, as the following example shows:

clhalt --force
INFO 15/06/2005 02:21:36 Validated checksum for cluster configuration.
INFO 15/06/2005 02:21:36 Attempting to halt cluster sl4cluster...
INFO 15/06/2005 02:21:36 Attempting to contact a cluster daemon...
INFO 15/06/2005 02:21:36 Connecting to cluster daemon via host sl4s1
INFO 15/06/2005 02:21:36 Attempting to stop application "apache" on sl4s1...
INFO 15/06/2005 02:21:41 Application "apache" has been halted successfully.
INFO 15/06/2005 02:21:41 Asking cluster daemons to abort...
INFO 15/06/2005 02:21:44 Cluster daemons aborted - cluster sl4cluster is DOWN.

The command always generates output to standard output - no “--verbose” option is required or
supported. The information regarding the shut-down of the application in detail can be found in
the application shut-down logs, available in the following directory and name format:

/var/log/cluster/clhalt.application.log

13.3 Halting Individual Nodes
The clhalt command also provides one other facility - the ability to stop the cluster services
running on a specified node only. To do this the “--node” option is provided.

The administrator should note that the DRBD devices on the node removed from the cluster are
not stopped. This means that data synchronisation will continue if possible.

By stopping the cluster daemons on a specified node it will ensure no applications can fail-over
to this node until it rejoins the cluster. It also means that any application with stale data on the
node taken out of the cluster will not start new attempts to synchronise that data.

Hence to stop node “serverb” from being part of the cluster:

clhalt --node serverb

If that node is not running any applications the following output will be shown:

INFO 15/06/2005 02:32:10 Validated checksum for cluster configuration.
INFO 15/06/2005 02:32:10 Attempting to halt cluster sl4cluster...
INFO 15/06/2005 02:32:10 Aborting cluster daemon on sl4s2...
INFO 15/06/2005 02:32:11 Cluster Daemon halted on sl4s2.

If applications are running on the node then the default behaviour is to abort the node removal:

Page 94

 Linuxha.net Administrator’s Reference

INFO 15/06/2005 02:34:09 Validated checksum for cluster configuration.
INFO 15/06/2005 02:34:09 Attempting to halt cluster sl4cluster...
ERROR 15/06/2005 02:34:09 Unable to remove node sl4s2 from cluster - it has
ERROR 15/06/2005 02:34:09 1 applications still running.

The behaviour can be changed by using the “--action” option, which can be set to one of the
following:

Ø error (Default). If Any applications are currently running on the node in question
then the removal of the node from the cluster will be aborted.

Ø halt All applications running on this node are halt prior to removing the node from
the cluster.

Ø failover All applications running on this node are failed-over to the remaining node (if
possible), before removing this node from the cluster.

For example to halt node “server1” ensuring any applications on it are failed-over use the
following command:

clhalt --node server1 --action=failover
INFO 25/06/2005 11:02:28 Validated checksum for cluster configuration.
INFO 25/06/2005 11:02:28 Attempting to halt cluster sl4cluster...
INFO 25/06/2005 11:02:28 Halting application apache on server1...
INFO 25/06/2005 11:02:34 Application apache halted in 6 seconds.
INFO 25/06/2005 11:02:36 SSH communication to server2 will be:
INFO 25/06/2005 11:02:36 192.168.100.34 ("drbd" network)
INFO 25/06/2005 11:02:36 Application apache starting on node server2...
INFO 25/06/2005 11:02:45 Application apache started in 9 seconds.
INFO 25/06/2005 11:02:45 Aborting cluster daemon on server1...
INFO 25/06/2005 11:02:46 Cluster Daemon halted on server1.

Each application will be failed-over separately, and once complete the node in question will be
removed from the cluster.

13.4 Adding Nodes to a Running Cluster
If an individual node has been previously removed (or failed due to a hardware problem), once it
has been rebooted or other actions taken so that is is ready to be added back to the cluster,
then simply run the following command on either node:

clform --join
INFO 25/06/2005 11:46:13 Validated checksum for cluster configuration
INFO 25/06/2005 11:46:13 SSH communication to server2 will be:
INFO 25/06/2005 11:46:13 192.168.100.34 ("drbd" network)
INFO 25/06/2005 11:46:13 Checking cluster status...
INFO 25/06/2005 11:46:13 sl4s2 is running - server1 will attempt to join cluster.
INFO 25/06/2005 11:46:13 Forced Join of cldaemon on server1...
INFO 25/06/2005 11:46:13 Waiting for server1 to join the cluster...
INFO 25/06/2005 11:46:20 Node server1 successfully joined cluster.

See the details on page 141 for further information on available options for this command.

Page 95

 Linuxha.net Administrator’s Reference

14 Adding further Applications

14.1 Purpose of this section
The aim of this section is to introduce another application into the cluster whilst the cluster is
already running. The ability to perform such changes was early in the development of
Linuxha.net and thus is considered very robust. This is just one of the features the software
offers in an attempt to minimise any requirement for cluster to application down-time for
maintenance.

Since many of the steps here are almost identical to those presented for the initial sample
application installation the section is quite brief. Only differences from the previous installation
are explored in detail.

The application that is being added to the cluster is “samba” - this will obviously be running a
Samba server hosting a couple of “shares”. This is a very good example of the Linuxha.net
software being used to provide high availability for storage for Windows® clients.

The specified sample files used in this section are available as a package from the following
URL:

http://www.linuxha.net/index.pl?ARGS=findproject:linuxha-samba,6

Once the application has been downloaded to a temporary directory, the “tarp” package can be
installed using the following command:

tpinstall -i -p linuxha_samba -v

Administrators can alternatively install the RPM or Autopackage version of the sample
application as required.

Once this has been installed the majority of the files necessary to build the sample application
can be found in under the “/etc/cluster/samba” directory. This package only needs to be
installed on the primary machine in the cluster. In the directory “/etc/cluster/samba/build” you will
find a script to configure the environment. It is recommended that you utilise this script, or
examine it and perform the necessary actions manually in your environment.

During the configuration of the environment all the steps below should be run as “root” on
“serverA” only unless explicitly stated otherwise.

14.2 Application Storage Requirements
In this example we will create three file systems for use in a similar manner as for the “apache”
package. The names, purposes and size of each logical volume is now explained:

Logical volume (Mount) Size Purpose
cfg (/samba/cfg) 20 Mb Samba configuration and cluster application

administration scripts

logs (/samba/logs) 20 Mb Where the log files will reside for this copy of the
smbd / nmbd processes.

shares (/samba/shares) 152 Mb Where the shares will reside.

Of course the sizes of the “shares” area is far too small for a practical application - in reality the
administrator would be expected to size this volume 10 or more Gigabytes. The size of 152Mb
was chosen since the physical extent size for the volume group has been defined as 4Mb and
this is large enough to serve sample files to a range of sample applications.

Page 96

http://www.linuxha.net/index.pl?ARGS=findproject:linuxha-samba,6

 Linuxha.net Administrator’s Reference

Please note that the sizes of the logical volumes might have been even smaller - but
unfortunately most Linux file systems only work on sizes larger than 16Mb, (though Reiserfs
actually requires at least 50Mb – at least on the test environments in use).

The commands necessary to create the volume group and logical volumes for the sample
“Samba” configurastion are as follows, (though the administrator will probably require different
disk names and volume sizes):

vgcreate -s 8 /dev/app02vg /dev/sda7
lvcreate -L 20 -n cfg /dev/app02vg
lvcreate -L 20 -n logs /dev/app02vg
lvcreate -L 152 -n shares /dev/app02vg

If the administrator has used the supplied build script then apart from the volume group creation
on both nodes, the logical volumes will have been created automatically. The “-s 8” argument to
“vgcreate” ensures that logical volume sizes of around 500Gb are supported.

When using the build script please be aware of the file system configured to build. Typically this
is configured as “jfs” and certain distributions, (such as Redhat Enterprise Linux 4), do not
include support for this. In such cases change the configuration file to use “ext3” or if possible
“xfs” instead.

Once these commands have been run successfully (on “servera”), the next step is to create the
necessary file systems (if using jfs):

mkfs -t jfs /dev/app02vg/cfg
mkfs -t jfs /dev/app02vg/logs
mkfs -t jfs /dev/app02vg/shares

Now the mount points should be created and the file systems mounted:

mkdir -p /samba/cfg /samba/logs /samba/shares
mount -t jfs /dev/app02vg/cfg /samba/cfg
mount -t jfs /dev/app02vg/logs /samba/logs
mount -t jfs /dev/app02vg/shares /samba/shares

Some sub-directories that will be used for the Samba service must now be created:

mkdir /samba/logs/locks
mkdir /samba/cfg/private
mkdir /samba/shares/tmp
mkdir /samba/shares/joe

14.3 Application Configuration for cluster
Now that the empty file systems are available typically the administrator would copy across the
relevant production data to “/samba/shares” and handle configuration of “smb.conf” - the file that
controls the Samba configuration.

For testing a specical “smb.conf” is provided as part of the “linuxha_samba” package. This is a
very cut down configuration just suitable for the example application - a realistic one will
undoubtedly be much more complex.

Obviously the portion of the file concerned with networking is particularly important. The
administrator must define the subnet to listen on and also ensure that the listening occurs on a
particular IP address only - otherwise IP and node fail-over are unlikely to work.

The configuration file should be saved as the following file:

/samba/cfg/smb.conf

The file will be broken down and explained (though for a proper explanation please review the
manual pages and documentation that the Samba project makes available.

Page 97

 Linuxha.net Administrator’s Reference

The first part of the configuration file is where the global settings go - these are settings that
control the Smb daemon overall, rather than relating to any particular share that it makes
available. In this simple example the configuration will look as follows:

[global]
 socket address = 172.16.177.50
 interfaces = 172.16.177.0/255.255.255.0
 bind interfaces only = yes
 workgroup = LINUXHA
 netbios name = linuxhapc
 server string = linuxha server
 security = user
 encrypt passwords = yes
 load printers = no
 socket options = TCP_NODELAY
 # Define file locations we intend to use
 log file = /samba/logs/log.smb
 log level = 1
 max log size = 5000
 lock directory = /samba/logs/locks
 smb passwd file = /samba/cfg/private/smbpasswd
 local master = yes
 preferred master = yes
 dns proxy = no

The first point to keep in mind is the “socket address” setting - this is set to the IP address of the
application we intend to put in the cluster, and this should not be an address that already exists
for any other application in the cluster, or statically on either of the servers in the cluster.

Much of the rest of the globals section is fairly standard (though the “workgroup”, “netbios” and
“server string” names should be set to suitable values to allow us to recognise this Samba
instance when browsing).

Please notice that near the end of the file the administrator must define locations for files that
Samba uses. It is important that all these files are defined under directories that are part of the
replicated data file systems - hence the reason that the “log file”, “lock directory” and “smb
password file” settings all refer to directories under the “/samba” directory tree, using one of the
appropriate file systems defined in the cluster.

In this case since it is only a example environment this section just defines two dummy shares,
one for a shared temporary area, the other serving Joe's home directory.

[tmp]
 comment = Temporary file space
 path = /samba/shares/tmp
 read only = no
 public = yes

[jhome]
 comment = Joes home dir Service
 path = /samba/shares/joe
 valid users = joe
 public = no
 writable = yes

14.4 Start and Stop scripts for “Samba” Application
In this instance the scripts to start and stop the “smbd” daemon process required will reside in
the following directory:

/samba/cfg/scripts

The scripts, called “start” and “stop” will have the following content respectively:

#!/bin/sh

/usr/sbin/smbd -s /samba/cfg/smb.conf -D
exit $?

Page 98

 Linuxha.net Administrator’s Reference

and:

#!/bin/sh

pid=`ps -eo pid,cmd | awk '$2 == "/usr/sbin/smbd" {print $1}'`

if [-n "$pid"]
then
 kill $pid
 exit 0
else
 echo "Error: Unable to find process to kill" >&2
 exit 1
fi

It is also recommended that a “restart” script is also created which will be used by the process
monitor to stop and start “smbd” if this daemon appears to fail. The contents of this script are:

#!/bin/sh

/samba/cfg/scripts/stop
sleep 1
/samba/cfg/scripts/start
exit $?

14.5 User Environment
Since the “tmp” share is globally available the administrator is recommended to set the
permissions to something suitable:

chmod 1777 /samba/shares/tmp

The above command also sets the “sticky” bit on the directory ensuring only the owner of files is
able to delete them, (though anyone can actually truncate them and overwrite them!).

Joe's home directory also needs correct permissions setting. Firstly the administrator must
ensure that the “Joe” exists on both “ServerA” and “ServerB”, but running the following
command (assuming this is a test environment).

useradd -u 1001 joe

It does not matter what UID is used, but it must be the same on both servers - if it is not the
mapping of data between one server and the other will not work when a fail-over occurs.

The administrator must also ensure that the following command is run on “ServerA” to create a
Samba user for “joe”:

smbpasswd -c /samba/cfg/smb.conf -a -U joe

Following this the administrator should set the local UNIX password for the “joe” account to the
same values - on both servers ideally.

passwd joe

14.6 Cluster Configuration
If the “build” script from the “linuxha_samba” package has not been used the administrator must
create the directory for Samba configuration information on “Servera”:

mkdir /etc/cluster/samba

In this directory the “appconf.xml” must exist. For a sample configuration the contents may
appear similar to the following:

Page 99

 Linuxha.net Administrator’s Reference

<?xml version="1.0"?>
<appconf>
 <global>
 <name>samba</name>
 <version>0.2</version>
 <takeover>normal</takeover>
 <syncrate>5000</syncrate>
 <preferred_node>LEAST_CPU_LOAD</preferred_node>
 <!-- <dependencies></dependencies> -->
 <autostart>no</autostart>
 </global>

 <networks>
 <network net="prod" ip="192.168.0.86"
 broadcast="255.255.255.255"
 checklist="192.168.0.1,192.168.0.4" checkpercent="50"
 pingtype="icmp" pingtimeout="2"/>
 </networks>

 <vg>
 <name>sambavg</name>
 <type>filesystems</type>
 </vg>

 <application>
 <startscript>/samba/cfg/scripts/start</startscript>
 <stopscript>/samba/cfg/scripts/stop</stopscript>
 <maxstoptime>10</maxstoptime>
 <maxstarttime>10</maxstarttime>
 </application>
</appconf>

If the build script has been used from the sample packge the only details likely to change are the
networking information (probably just the IP address), and the volume group name.

Also in the “/etc/cluster/samba” directory on “servera” a Lems configuration file should be
created. The name of this file should be:

/etc/cluster/samba/lems.local.xml

In theory it is possible to use a different name than “lems.local.xml”, but that option has not been
validated for version 1.0.0.

<?xml version="1.0"?>
<lems_config>
 <globals modules="/sbin/cluster/lems/modules"
 programs="/sbin/cluster/lems/programs"
 logs="/var/log/cluster/lems"
 port="8801"
 />
 <check>
 <name>flag_check</name>
 <type>internal</type>
 <module>flag_check samba</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="%RCDATA%"/>
 <action rc="2" action="ABORT"/>
 </action_list>
 </check>
 <check>
 <name>smbd</name>
 <type>internal</type>
 <module>procmon /etc/cluster/samba/smbd.xml</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="STOP"/>
 <action rc="2" action="FAILOVER"/>
 </action_list>

Page 100

 Linuxha.net Administrator’s Reference

 </check>
 <check>
 <name>ip</name>
 <type>internal</type>
 <module>ip_module samba</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="RUN move_ip"/>
 <action rc="2" action="STOP"/>
 </action_list>
 </check>
 <check>
 <name>fsmonitor</name>
 <type>internal</type>
 <module>fsmon samba</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="PAUSE 30"/>
 <action rc="10" action="PAUSE 60"/>
 <action rc="2" action="STOP"/>
 <action rc="3" action="FAILOVER"/>
 </action_list>
 </check>
</lems_config>

14.7 Checking the new Application Configuration
The steps to follow when adding additional applications to an existing cluster are exactly the
same as when adding the first application, and can be done when the cluster is running or shut-
down.

The steps must be able to communicate to both nodes and so applications can only be defined
or changed when both nodes are running and networked in a production-like manner.

Thus to check the application configuration the administrator should run the following on
“servera”:

clbuildapp --application samba --verbose --check

When this is run the output it generates should appear similar to the following:

INFO 09/06/2005 01:27:19 Backups directory defaulted to /clbackup
INFO 09/06/2005 01:27:20 Global section configuration validation complete
INFO 09/06/2005 01:27:20 Checked that node names resolve to IP addresses
INFO 09/06/2005 01:27:20 Successfully ssh'd from sl4s1 to sl4s2
INFO 09/06/2005 01:27:21 Successfully ssh'd from sl4s2 to sl4s1
INFO 09/06/2005 01:27:22 Attempting to backup cluster configuration on node sl4s1.
INFO 09/06/2005 01:27:22 Saved cluster configuation in 37879 bytes on node sl4s1
INFO 09/06/2005 01:27:22 Attempting to backup cluster configuration on node sl4s2.
INFO 09/06/2005 01:27:23 Saved cluster configuation in 9488 bytes on node sl4s2
INFO 09/06/2005 01:27:23 md5sum for sl4s1 is: /usr/bin/md5sum
INFO 09/06/2005 01:27:23 md5sum for sl4s2 is: /usr/bin/md5sum
INFO 09/06/2005 01:27:23 Loading DRBD kernel module locally.
INFO 09/06/2005 01:27:25 Loading DRBD kernel module on remote host.
INFO 09/06/2005 01:27:27 Validated clconf.xml is consistent on both nodes
INFO 09/06/2005 01:27:27 Validated mkdir cluster utility on sl4s1
INFO 09/06/2005 01:27:28 Validated mkdir cluster utility on sl4s2
INFO 09/06/2005 01:27:28 Validated mkmdcfg cluster utility on sl4s1
INFO 09/06/2005 01:27:28 Validated mkmdcfg cluster utility on sl4s2
INFO 09/06/2005 01:27:28 Validated drbd_tool cluster utility on sl4s1
INFO 09/06/2005 01:27:28 Validated drbd_tool cluster utility on sl4s2
INFO 09/06/2005 01:27:28 Validated specified syncrate setting is sane.
INFO 09/06/2005 01:27:28 Autostart parameter present and valid.
INFO 09/06/2005 01:27:28 Preferred_node parameter present and valid.
INFO 09/06/2005 01:27:28 Current status of application samba is: NOT_REGISTERED
INFO 09/06/2005 01:27:28 Number of networks to validate: 1
INFO 09/06/2005 01:27:28 Validated single IP address for application
INFO 09/06/2005 01:27:28 Validated network prod defined in cluster topology.
WARN 09/06/2005 01:27:28 Network prod missing netmask - will use default.

Page 101

 Linuxha.net Administrator’s Reference

INFO 09/06/2005 01:27:28 Validated optional broadcast for prod is in required format.
INFO 09/06/2005 01:27:28 Validated network prod attributes.
INFO 09/06/2005 01:27:28 Status directory on sl4s1 already exists.
INFO 09/06/2005 01:27:29 Validated/created status directory on sl4s2

Page 102

 Linuxha.net Administrator’s Reference

Once the application configuration has been checked then the “Lems” session information
should be next. This can be checked by running the following command:

lems.pl --application samba \
 --config /etc/cluster/samba/lems.local.xml \
 --verbose --file /dev/tty --check

This should then output something similar to the current terminal:

INFO 09/06/2005 01:28:16 Using modules from : /sbin/cluster/lems/modules
INFO 09/06/2005 01:28:16 Using programs from : /sbin/cluster/lems/programs
INFO 09/06/2005 01:28:16 Writing logs to : /var/log/cluster/lems
INFO 09/06/2005 01:28:16 Validating port not open locally...
INFO 09/06/2005 01:28:16 Validating port not open on sl4s2...
INFO 09/06/2005 01:28:16 No clash for application apache - uses port 8800 not 8801.
INFO 09/06/2005 01:28:16 Listening on port : 8801
INFO 09/06/2005 01:28:16 Global initialisation complete.
INFO 09/06/2005 01:28:16 Started local server on port 8801
INFO 09/06/2005 01:28:16 Validating monitor entry ip...
INFO 09/06/2005 01:28:16 Validated monitor entry ip successfully.
INFO 09/06/2005 01:28:16 Validating monitor entry fsmonitor...
INFO 09/06/2005 01:28:16 Validated monitor entry fsmonitor successfully.
INFO 09/06/2005 01:28:16 Validating monitor entry smbd...
INFO 09/06/2005 01:28:16 Validated monitor entry smbd successfully.
INFO 09/06/2005 01:28:16 Validating monitor entry flag_check...
INFO 09/06/2005 01:28:16 Validated monitor entry flag_check successfully.
INFO 09/06/2005 01:28:16 Check mode - transferring validated config to remote node.
WARN 09/06/2005 01:28:17 Unable to transfer configuration to remote node.
INFO 09/06/2005 01:28:17 Calculated a check interval of 5.0 seconds.

Notice in the output the third line from the bottom - when running in “--check” mode the
configuration file that has been successfully checked will be automatically copied to the other
node in the cluster. This has one important impact on possible “Lems” configurations:

If the administrator wishes to use a different configuration file on each host for Lems that
configuration should be copied back to the correct location following the successful build of the
application..

14.8 Allocating Application Resources
As before following the validation of the application configuration file, and the Lems
configuration, the next step is to allocate the required resources to the application.

If the application was built using the “buildit” script from the sample “linuxha_samba” package,
then firstly un-mount the file systems on the 2nd node:

umount /samba/cfg
umount /samba/logs
umount /samba/shares

The file systems must remain mounted on the primary node from where the “clbuildapp”
commands are run. Volume group configuration is done using the “--vgbuild” option:

clbuildapp --application samba --vgbuild --verbose

This will ensure that the volume group exists on both sides of the cluster - aborting if it does not.
Any logical volumes defined locally in the specified volume group will be checked and created
on the remote. Both hosts will also have additional logical volumes added to account for the
meta-data for DRBD device management. The output below has been shorted to remove
duplicate output that was seen during the “--check” option.

Of course if you have made use of the “build” script from the “linuxha-samba” package, the
logical volumes will already have been made. Even so you must perform this step to ensure a
valid configuration – otherwise you will not be able to allocate the resources for the application
in the cluster.

Page 103

 Linuxha.net Administrator’s Reference

INFO 09/06/2005 01:32:38 Status directory on sl4s1 already exists.
INFO 09/06/2005 01:32:38 Validated/created status directory on sl4s2
INFO 09/06/2005 01:32:38 Getting list of defined volume groups on sl4s2
INFO 09/06/2005 01:32:39 Validated Meta volume exists for shares (and is 128mb)
INFO 09/06/2005 01:32:39 Validated Meta volume exists for cfg (and is 128mb)
INFO 09/06/2005 01:32:39 Validated Meta volume exists for logs (and is 128mb)
INFO 09/06/2005 01:32:40 VG sambavg does not contain LV cfg_meta on sl4s2 -
creating...
INFO 09/06/2005 01:32:41 VG/LV sambavg/cfg_meta of 131072Kb built on sl4s2
INFO 09/06/2005 01:32:41 VG sambavg does not contain LV logs_meta on sl4s2 -
creating...
INFO 09/06/2005 01:32:42 VG/LV sambavg/logs_meta of 131072Kb built on sl4s2
INFO 09/06/2005 01:32:42 VG sambavg does not contain LV shares_meta on sl4s2 -
creating...
INFO 09/06/2005 01:32:43 VG/LV sambavg/shares_meta of 131072Kb built on sl4s2
INFO 09/06/2005 01:32:43 All LV checks on VG sambavg completed
INFO 09/06/2005 01:32:44
INFO 09/06/2005 01:32:44 Now run with the --build to ensure all required resources
INFO 09/06/2005 01:32:44 are allocated on both nodes
INFO 09/06/2005 01:32:44

Following the successful Volume Group configuration the actual cluster server resources,
(devices and ports), should now be allocated. To do this the administrator should run the
following command on “servera”:

clbuildapp --application samba --build --verbose

The interesting lines of output this will generate are shown below - notice the allocation of
resources to the application.

INFO 09/06/2005 01:33:39 Validated VG build run has completed against this
configuration.
INFO 09/06/2005 01:33:39 LVM on sl4s1 appears to be version 2
INFO 09/06/2005 01:33:39 LVM on sl4s2 appears to be version 2
INFO 09/06/2005 01:33:39 Checked volume groups exist on sl4s1
INFO 09/06/2005 01:33:40 Checked volume groups exist on sl4s2
INFO 09/06/2005 01:33:40 Checked 6 logical volumes for sambavg on sl4s1
INFO 09/06/2005 01:33:40 Completed volume group analysis on sl4s1:
INFO 09/06/2005 01:33:40 VG: sambavg Used LVs: 3 Not Used LVs: 0
INFO 09/06/2005 01:33:40 sl4s1 available: PORTS: 98, DRBD: 49
INFO 09/06/2005 01:33:40 sl4s2 available: PORTS: 98, DRBD: 49
INFO 09/06/2005 01:33:40 Validated enough resources available on both nodes
INFO 09/06/2005 01:33:40 Host/VG/LV sl4s1/sambavg/shares allocated port 9902
INFO 09/06/2005 01:33:41 Host/VG/LV sl4s2/sambavg/shares allocated port 9902
INFO 09/06/2005 01:33:41 Host/VG/LV sl4s1/sambavg/shares allocated DRBD 1
INFO 09/06/2005 01:33:42 Host/VG/LV sl4s2/sambavg/shares allocated DRBD 1
INFO 09/06/2005 01:33:42 Host/VG/LV sl4s1/sambavg/cfg allocated port 9903
INFO 09/06/2005 01:33:42 Host/VG/LV sl4s2/sambavg/cfg allocated port 9903
INFO 09/06/2005 01:33:42 Host/VG/LV sl4s1/sambavg/cfg allocated DRBD 10
INFO 09/06/2005 01:33:43 Host/VG/LV sl4s2/sambavg/cfg allocated DRBD 10
INFO 09/06/2005 01:33:43 Host/VG/LV sl4s1/sambavg/logs allocated port 9904
INFO 09/06/2005 01:33:44 Host/VG/LV sl4s2/sambavg/logs allocated port 9904
INFO 09/06/2005 01:33:44 Host/VG/LV sl4s1/sambavg/logs allocated DRBD 11
INFO 09/06/2005 01:33:45 Host/VG/LV sl4s2/sambavg/logs allocated DRBD 11
INFO 09/06/2005 01:33:45 Created directory /etc/cluster/.status/samba on node sl4s1
INFO 09/06/2005 01:33:45 Validated/created application status directory on sl4s2
INFO 09/06/2005 01:33:45 Validated/created fsmap directory on sl4s1
INFO 09/06/2005 01:33:45 Validated/created fsmap directory on sl4s2
INFO 09/06/2005 01:33:45 Validated/created application config directory on sl4s2
INFO 09/06/2005 01:33:46 Copied config data for samba to sl4s2
WARN 09/06/2005 01:33:47 Following problems for path /samba/cfg consistency:
WARN 09/06/2005 01:33:47 Permissions differ for //samba/cfg [local=0777,remote=0755]
INFO 09/06/2005 01:33:48 Validated file system mount point /samba/logs
INFO 09/06/2005 01:33:49 Validated file system mount point /samba/shares
INFO 09/06/2005 01:33:49 Created fsmap data for samba on sl4s1
INFO 09/06/2005 01:33:49 Copied fsmap data for samba to sl4s2
INFO 09/06/2005 01:33:50 Deleted TIME file from node sl4s2
INFO 09/06/2005 01:33:50 Application samba now (re)registered with cluster.
INFO 09/06/2005 01:33:50 Transfering XML file lems.local.xml to sl4s2.
INFO 09/06/2005 01:33:50 Transfering XML file smbd.xml to sl4s2.
INFO 09/06/2005 01:33:51
INFO 09/06/2005 01:33:51 Cluster build has completed successfully.
INFO 09/06/2005 01:33:51 Now use the --sync option to ensure that all

Page 104

 Linuxha.net Administrator’s Reference

INFO 09/06/2005 01:33:51 file systems on the other node are synchronised
INFO 09/06/2005 01:33:51

Please notice that the output included the following warning:

WARN 09/06/2005 01:33:47 Following problems for path /samba/cfg consistency:
WARN 09/06/2005 01:33:47 Permissions differ for //samba/cfg [local=0777,remote=0755]

It is recommended that the cause of this warning is corrected before continuing – such warnings
are given for good reason.

Remember that if any permissions (and user/group) on any component of any path that is used
to mount a replicated directory is different on both servers it may result in the application running
differently on each server.

In this case the “local” permissions should be changed to ensure they match those on “serverb”:

chmod 777 /samba/shares

At this point all necessary resources have been allocated and as the output states the final part
of adding the application to the cluster is to synchronise the data to ensure we have two valid
copies of the data.

This is done using the following command:

clbuildapp --application samba --sync --verbose

Page 105

 Linuxha.net Administrator’s Reference

This will generate output culminating with the data synchronisation. Only when the
synchronisation is complete will the script exit:

INFO 09/06/2005 01:35:27 Loading details of file systems to unmount
INFO 09/06/2005 01:35:27 File system /samba/cfg un-mounted
INFO 09/06/2005 01:35:27 File system /samba/logs un-mounted
INFO 09/06/2005 01:35:27 File system /samba/shares un-mounted
INFO 09/06/2005 01:35:27 All file systems un-mounted successfully.
INFO 09/06/2005 01:35:28 Some/all drbd devices need configuration on sl4s1
INFO 09/06/2005 01:35:29 All drbd services now running on sl4s1
INFO 09/06/2005 01:35:31 Attempted to start new drbd services on sl4s2
INFO 09/06/2005 01:35:31 All drbd services now running on sl4s2
INFO 09/06/2005 01:35:32 Successfully started rebuild of DRBD devices for samba.
INFO 09/06/2005 01:35:32 Sync status: Devices sync'ed: 0, Devices unsync'ed: 0
INFO 09/06/2005 01:35:32 Sync status: Currently syncing LV /dev/sambavg/shares, 0.0%
completed
INFO 09/06/2005 01:35:42 Sync status: Devices sync'ed: 2, Devices unsync'ed: 0
INFO 09/06/2005 01:35:42 Sync status: Currently syncing LV /dev/sambavg/shares, 39.5%
completed
INFO 09/06/2005 01:35:52 Sync status: Devices sync'ed: 2, Devices unsync'ed: 0
INFO 09/06/2005 01:35:52 Sync status: Currently syncing LV /dev/sambavg/shares, 93.7%
completed
INFO 09/06/2005 01:35:57 Sync status: Devices sync'ed: 3, Devices unsync'ed: 0
INFO 09/06/2005 01:35:57 All logical volumes on remote host sl4s2 synchronised
INFO 09/06/2005 01:35:57 Stopping DRBD on sl4s1 devices.
INFO 09/06/2005 01:35:59 Stopping DRBD on sl4s2 devices.
INFO 09/06/2005 01:36:00
INFO 09/06/2005 01:36:00 Successfully Synchronised data from sl4s1 to sl4s2
INFO 09/06/2005 01:36:00

At this point the application is fully valid. Since the cluster daemons are currently running
messages similar to the following will appear at the end of the log for the cluster daemon (if
running in verbose mode):

INFO 09/06/2005 01:33:50 Validated Build for samba is valid - will register with
cluster.
INFO 09/06/2005 01:33:50 Application samba has been registered with the cluster
daemons

At this point running the “clstat” command will indicate that the application is know known to the
cluster:

Cluster: sl4cluster - UP

 Node Status
 sl4s1 UP
 sl4s2 UP

 Application Node State Started Monitor Stale Fail-over?
 apache N/A DOWN N/A N/A N/A Yes
 samba N/A DOWN N/A N/A N/A Yes

From this point onwards teh administrator can start the application as required - there is no
requirement to stop/start or “refresh” are cluster processes. As usual the application can be
started using just:

clrunapp --application samba

If any warnings were issued during the build phases these should be rectified before attempting
application fail-over testing. For example, if the “build” script was not used for this sample
configuration the administrator may need to create the file system mount points manually on
“serverb”:

ssh serverb mkdir -p /samba/cfg /samba/logs /samba/shares

Failure to ensure mount points exist on the other node will result in the application failing to start
on “serverB” since it is unable to mount the required file systems.

Page 106

 Linuxha.net Administrator’s Reference

14.9 Limitations with Samba Sample Application
The above application works - you would mount the temporary directory on a Linux host using a
command similar to the following:

mount -t smbfs -o username=joe //172.16.177.50/tmp /tmpmnt/

At this point failure of the host running the “samba” application will result in the application
migrating to the remaining host. For the duration of the fail-over event any attempt at access to
the resource will hang or error. Once the fail-over is completed completed access to the data
provided by the share should work as normal again.

Since the example Samba application is very basic note that the “joe” account had to be created
and managed as accounts on separate machines.

A better approach would be to manage the accounts via a clustered LDAP server instead. This
would remove the requirement of having to keep the UNIX / SMB password files synchronised.

Production quality Samba distributions with Linuxha.net are possible (and are indeed already in
operation). System administrators with more experience with Samba can undoubtedly provide
improvements for this sample package to remove limitations of this sample implementation.

14.10 Adding Applications: Common Problems
Of course following the instructions given above should result in a perfectly working cluster
application, (although with some limitations as explained previously). Despite attempting to
simplfy the build and management of clustered applications, problems can still occur. Some of
the more common problems found when using applications with Linuxha.net are now explained.

14.10.1 Mismatch Security Settings

Most applications have the concept of a “software owner” - this is a user-account that is used
both to own files and is expected to run common processes or daemons for that application. In
such scenarios it is very important to use that the user ID in question exists on both nodes in the
cluster.

Further the administrator should ensure that the UID and GID numbers map on both servers,
and even the profiles which define the environment are the same. Even small differences can
result in subtle problems following a fail-over.

For example having a different umask on each node could result in problems and be hard to
spot. The administrator must take care to ensure the components that are not shared are
compatible.

In a similar manner the permissions on mount points for directories in the application should
also be the same on both nodes to ensure obscure differences between running the applications
on either node do not occur. When building the application warnings are issued if problems are
found; such warnings should not be ignored. Of course these checks only take place when an
aplication is built, it is the responsibility of the administrator to ensure any changes outside of
the replicated data areas are duplicated on both hosts.

14.10.2 Missing Mount Points

A common problem is that mount points for directories on the secondary node are simply not
created when the application environment is built. Missing mount points are shown as warnings
during the build process for an application. Failure to ignore this will result in non-functioning
fail-over for the application in question.

However missing mount points or incorrect permissions are still possible since changes
following the application build might have resulted in the moint point directories having been
removed, renamed or simply their owner, group or permissions changed to become more
restrictive.

Page 107

 Linuxha.net Administrator’s Reference

Page 108

 Linuxha.net Administrator’s Reference

Part III:

Cluster System Administration

Page 109

 Linuxha.net Administrator’s Reference

15 System Administrator Responsibilites
Depending on the environment the system administrator may be responsible for on going
support of the cluster, or may hand-over to those involved in a “support” role. Whoever is
involved with day-to-day support of the cluster should read the information in this section.

From the author’s experience many problems with cluster availability are not down to hardware
or software failures, but due to errors made by support staff.

Thus it is critically important that whoever manages the cluster carefully reads this section.
Ideally if the implementation and support roles are separate those involved in support should be
involved in implementation as much as possible to smooth the transition of the cluster into a
production environment.

The purpose of this part of the document is to describe the typical activities that might occur
when managing a live cluster – and how they should be handled. Further this section contains
information that should be considered if the configuration of the cluster needs to change at all –
which it often does over the lifetime of the environment.

Importantly the final section concludes with various failure scenarios that might occur and the
steps the administrator may need to following to allow client access to continue, or in the worst
cases, to be recovered.

The sections here mirror typical respsonsibilities of the cluster administrator, including;

➢ Managing Application Monitoring with”Lems”
Lems monitoring is critical to the management of any application running in the cluster.
Although these daemons will run without intervention for as long as necessary it is
possible to communicate with them to ensure the application being monitored works in the
manner expected.

Typically communication is required if the administrator wishes to manually stop the
application processes, but not shutdown the complete cluster application. This is useful
when performing software upgrades, for example.

Additionally the administrator may wish to change, remove or add additional monitors for
an application, and does not want to stop the application to take advantages of the
changes.

➢ Checking Cluster and Application State Information
The “clstat” output should be used both when the cluster is running normally to validate
everything is indeed running as expected.

Checks should also take place to ensure all cluster processes are running as expected -
to ensure processes such as “cldaemon” or “clnetd” are running on cluster nodes.

➢ Adding / Removing Applications
Although the process of adding applications has previously been dealt with some
additional information regarding limitations and impact to existing cluster infrastructure are
considered.

Given that some clusters have many applications it is inevitable that eventually an existing
application will need to be removed. This section discusses how applications can be
removed from the running cluster, and considers the impact of this activity on cluster
resources and application availability – including LVM interaction.

➢ Changing Cluster Configuration
Although Linuxha.net does not implement limits in many places it is sometimes necessary
to add further resources - such as the maximum number of devices to use.

Further this section indicates which configuration parameters defined in the cluster

Page 110

 Linuxha.net Administrator’s Reference

topology configuration can be changed whilst the cluster is running, and the impact of
such changes.

➢ Changing Application Configurations
Some applications are more complex than others. The more complex an application the
greater the likelihood that some problem will be found with the environment once the
cluster is “live”. Hence Linuxha.net allows many of the specifics of the application
configuration to be changed dynamically - though some work remains in this field, (such
as IP address manipulation).

It is very unusual for the resources required for an application not to change over time.
Databases and file servers often grow rapidly. Support on dynamic reconfiguration of disk
resources assigned to an application is seen as a key benefit of Linuxha.net.

➢ General systems administration
Tasks such as changing the verbosity of logs, restarting individual daemons, and dealing
with software upgrades must be dealt with.

➢ Understanding current Linuxha.net Limitations
Although Linuxha.net has been designed to ensure as many changes to the environment
as possible do not require the cluster to be shut down, there are some limits to this
“dynamic” nature of the application. All current limitations are described here, along with
the steps necessary to make such off-line changes.

➢ Handling Failure Scenarios
The administrator is responsible for ensuring that the cluster continues to run without
failure, but if a failure does occur the administrator must be able to quickly determine the
reason for the failure and then take appropriate actions.

Sometimes the cluster is unable to recover automatically and so the administrator may be
called to manually intervene to bring application back on-line, and hopefully plan changes
to the future to avoid such scenarios occurring again.

Page 111

 Linuxha.net Administrator’s Reference

16 Managing Application Monitoring
Lems has been introduced as the mechanism by which the individual applications in the cluster
monitor the status of resources owned by that application and take relevant steps when
changes are noted. The “change” might be the failure of an application, loss of data
synchronisation, or even noting the presence of a file or flag.

Each check within Lems is actually implemented by separate modules. Thus it is possible for the
administrator to add custom modules to a configuration relatively easily. Information covering
the technical details of Lems, including information on standard modules and how to write
custom modules can be found on page 174.

Management of a Lems daemon for a running application is one of the more typical actions the
administrator might perform. One of the most common mistakes affecting application availability
is incorrectly assuming Lems might not notice a change. For example if the administrator wishes
to quickly stop a process, perform some actions and then restart it, the Lems daemon may
notice the failure and attempt to restart the application. If several attempts occur in a short
period of time it could cause an application fail-over.

Linuxha.net includes a utility called “lemsctl” to provide an interface for sending messages to a
running Lems daemon. The typical syntax in use is very straightforward:

lemsctl --application appname --msg “message to send”

The daemon itself understands several messages (as described next), and it is also possible to
pass messages down to individual monitors that are currently running. As with all other network
communications within Linuxha.net the transport of information is encoded using the cluster key,
thus protecting against others attempting to use it - in the same manner as the cluster daemons
themselves.

Of course since the key is stored in a file that is only readable by “root”, no other user accounts
in either node in the cluster will be able to use this utility.

16.1 Stopping Monitoring
If the administrator wishes to change an application, but is unsure of the impact the change will
have it is recommended that all Lems monitors for the application are stopped. This will
ensure that the cluster software does not attempt to “repair” a situation that you may wish to
correct manually.

To stop all Lems monitors for a particular application the following command can be used:

PAUSE

Hence to send them message to the Lems daemon currently running for the “apache”
application use the following command:

lemsctl --application apache --msg PAUSE

It does not matter which node this command is run on – it will ensure the request is sent to the
correct server / daemon – assuming the specified application is actually running and has a
functioning Lems daemon..

When this command has been run the detailed section of the output for an application that has
“lems” running will show all monitors as “Stopped”:

clstat -A apache
Cluster: sl4cluster - UP

 Application Node State Runnnig Monitor Stale Fail-over?
 apache sl4s2 STARTED 0:00:05 Running 0 Yes

 File Systems

Page 112

 Linuxha.net Administrator’s Reference

 Mount Point Valid Type State % Complete Completion
 /apache both drbd Sync

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Stopped 3 0 N/A

 General Monitors

 Type Name Status
 Flag Check flag_check Stopped
 FS Monitor fsmonitor Stopped

Following this no resources are being monitored by the Lems daemon for “apache”. Any other
Lems daemons for other running packages will continue unaffected. Thus all “software” changes
can be performed against the application, though physical network and node checking continues
(by the network and cluster daemons respectively).

16.2 Resuming Monitoring
If use of the “PAUSE” has been made and any changes are complete – the administrator is
recommended to ensure that all monitoring for the application is started again as soon as
possible. This can be achieved through the use of the “RESUME” command:

lemsctl --application apache --msg RESUME
OK

Page 113

 Linuxha.net Administrator’s Reference

Now checking the monitors should show something similar to:

clstat -A apache
Cluster: sl4cluster - UP

 Application Node State Runnnig Monitor Stale Fail-over?
 apache sl4s2 STARTED 0:00:05 Running 0 Yes

 File Systems

 Mount Point Valid Type State % Complete Completion
 /apache both drbd Sync

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Running 3 0 N/A

 General Monitors

 Type Name Status
 Flag Check flag_check Running
 FS Monitor fsmonitor Running

The important point to note here is that if a module was “Stopped” prior to the “PAUSE”
command, then the “RESUME” will leave it stopped – which is exactly what is needed –
consider otherwise what would happen if the “IP fail-over” monitor was started at this point, for
example.

Page 114

 Linuxha.net Administrator’s Reference

16.3 Pausing a Module
Although stopping monitoring of all resources for an application is very useful, after some
experience with the software it is better just to stop certain monitors. For example the
administrator should not need to stop monitoring the status of data replication if changes are just
being made to the application data.

Stopping certain monitors can actually be achieved in two different ways;

Ø Flag Monitor - this monitor is provided since it allows the administrator to specify a directory
which can be checked for certain files and then modules stopped whilst the files exist. This
is provided since it can be configured so the directory does not need “root” access to stop
monitoring - useful when application administrator is performed by different users, rather
than the cluster administrator.

Ø Lemsctl Utility - the facility recommended for the cluster administrator since unlike the “flag
monitor” method it can be run on either machine (rather than on the machine running the
application), and does not require the administrator to remember which directory to create
the file in.

When stopping each monitor recall that the name of each is unique, and hence this name can
be used to ensure just that particular monitor is stopped. For example using the monitors shown
in the example on the previous page, to stop the “httpd” process monitor the administrator could
use the following command:

lemsctl --application apache --msg "PAUSE httpd"
httpd PAUSED

Now the “Process Monitors” section of the output would look similar to:

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Stopped 3 0 N/A

Thus the administrator gives the name of the monitor, which will be different from the type of the
monitor. This allows the same monitor to be used multiple times in a Lems configuration, and
each to be handled individually by “lemsctl”.

16.4 Resuming a Module
Once the required administration work is complete it is recommended that monitoring is started
as soon as possible. Starting monitoring for a particular monitor is also very straightforward – for
example to restart the “httpd” monitor that was paused previously use:

lemsctl --application apache --msg "RESUME httpd"
httpd RESUMED (in 10 secs)

Notice in this instance that monitor will resume checking after the check interval defined for the
application has been passed.

16.5 Removing a Monitor
The previous actions of pausing and resuming monitors tend to be used for transient
maintenance on the environment in which the cluster operates. However it is also possible to
perform more permanent changes to the monitor configuration without actually stopping a
package – adding further to the availability features of this product.

Taking this into account it is possible to modify the monitors that a running “lems” session uses
without actually having to restart the “lems” daemon process or the application in the cluster that
it monitors. Again access to this functionality is via the “lemsctl” command. Prior to removing an

Page 115

 Linuxha.net Administrator’s Reference

existing monitor note the name of the monitor from the output of the “clstat” command, for
example:

clstat --application apache

Consider the monitor section of the output:

 General Monitors

 Type Name Status
 Flag Check flag_check Running
 FS Monitor fsmonitor Running

If the administrator wishes to remove the “Flag Check” monitor named “flag_check” then the
following command could be used:

lemsctl --application apache --msg "REMOVE flag_check"
flag_check REMOVED

Now the output from the “clstat” command will not include any details of that monitor, and the
log file, (if verbose logging is enabled), should contain a line similar to:

INFO 09/06/2005 02:15:22 Removed monitor "flag_check" by user request.

After this point the specified monitor will no longer be part of the running Lems configuration for
the application in question.

It is important to realise that this action only modifies the running configuration - if the
administrator wishes to remove the monitor permanently the XML configuration file for the Lems
daemon in question must be modified - on both hosts.

Once the specified monitor has been removed it can be modified (or its configuration changed in
the XML configuration file - and then reloaded (see below) - without actually impacting the
availability of the application being monitored in any way beyond the monitor in question.

Although it is possible to remove any monitor in this manner it is recommended that the
administrator only remove custom monitors unless they have significant experience using the
product.

The above point should be taken seriously - removing the “FS Monitor” is great as an example
but could seriously impact the availability of the environment if left from the running configuration
for a period of time8.

16.6 Adding a new Monitor
To compliment the support for removal of modules from the running configuration the “lemsctl”
command also supports the ability to actually add a new monitor.

It is not possible to add a monitor that already configured - instead use the “REMOVE” facility as
described in the previous section first.

To install a new module the administrator must get the name of the module from the
configuration file, (in this case the intention is to reload the “flag_check” module), and pass this
to the Lems daemon using the “INSTALL” command, for example:

lemsctl --application apache --msg "INSTALL flag_check"
OK

Examining the “lems” log file now should show some text similar to the following:

INFO 09/06/2005 02:17:01 *** INSTALL MODULE flag_check START ***

8 The “Fs monitor” is used to automatically recover from umsynchronised data and thus not running it could impair the
quality of the data for the application in question.

Page 116

 Linuxha.net Administrator’s Reference

INFO 09/06/2005 02:17:01 New configuration using modules from :
/sbin/cluster/lems/modules
INFO 09/06/2005 02:17:01 New configuration using programs from :
/sbin/cluster/lems/programs
INFO 09/06/2005 02:17:01 Validated new monitor entry flag_check successfully.
INFO 09/06/2005 02:17:01 Successfully loaded module flag_check.pm
INFO 09/06/2005 02:17:01 Scheduled flag_check for 1118279826 (object type=flag_check)
INFO 09/06/2005 02:17:01 Successfully added new monitor flag_check.
INFO 09/06/2005 02:17:01 *** INSTALL MODULE flag_check END ***

Page 117

 Linuxha.net Administrator’s Reference

16.7 Monitor Specific Communication
The commands described previously in this section are generic to any monitor that is currently
in use. However a more fine-grained control mechanism for management of individual monitors
is also available.

This is made possible via specific messages that each module implements. This functionality is
optional, and will be different for each module. Information on how to write a module to handle
specific requests in this manner see the technical information starting on page 188.

All custom messages are sent to the monitor in question using the following syntax form of the
“lemsctl” command:

lemsctl --application appname --msg “CMD monitor command”

The “command” can be one or more words, the format of which is determined by the particular
monitor itself.

The process monitor is probably one of the most common monitors that an administrator might
spend time sending messages to. Consider the following process monitor status report from
“clstat”:

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Running 3 1 09/06/2005-03:18

Although the process monitor supports the ability for the number of current restarts of the
application to be reset automatically after a given time period, it is often useful to reset this
earlier - for example if the failure reason has been identified and fixed, and the administrator
wishes to ensure that the fail-over scenario now reflects a “fresh” cluster configuration.

For this reason the “procmon” type monitor (Process Monitor) support a custom “RESET” option,
which can specified using the custom message format of command:

lemsctl –application apache –msg “CMD httpd RESET”
OK

The response offered gives an indication of whether the command was understood, and/or
whether it was successful. The convention is that “OK” means that the command was
understood and actioned accordingly.

Now when the process monitor information is examined the output should show:

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Running 3 0 N/A

Another custom message accepted by “procmon” type monitors is “MAXCOUNT” - this can be
used to change the maximum number of times an application can be restarted before a fail-over
attempt is tried.

For example to set the “Restarts” value to 10, you could use the following command:

lemsctl --application apache --msg "CMD httpd MAXCOUNT 10"
OK

After this the restart count for the monitor will be changed to 10 – simple!

Again as with previous “lemsctl” commands remember that any changes are temporary - the
configuration files are not updated so if the changes are to be permanent then the administrator
should modify the relevant XML file as well - on both nodes.

Page 118

 Linuxha.net Administrator’s Reference

16.8 Log Management
Although all Linuxha.net daemons can operate with very little logging (just reporting on errors or
warnings), it is recommended that the “verbose” logging options be used in all circumstances.

Log files are one of the main tools of any system administrator, but they can also become a real
problem if they can not be managed easily. To ensure log files remain manageable the Lems
daemon supports two directives related to logging - “VERBOSE” and “LOGCYCLE”. The first of
these provides the ability to turn the logging verbose logging on or off:

lemsctl --application apache --msg "VERBOSE OFF"
OK

This obviously turns verbose logging off – to turn it back on again, simply replace “OFF” with
“ON”.

The second directive is more useful – it allows the log files to be cycled automatically. This is
done using the “LOGCYCLE” directive. Consider having the following log file for the “apache”
lems daemon:

-rw-r--r-- 1 root root 3825 Mar 9 09:34 lems-apache.log

Use of the “fuser” command will show that this file is open for writing, so changing the file
directly via shell utilities, (such as renaming it, removing it or compressing it) is not
recommended. However the “LOGCYCLE” directive is designed for this scenario, consider:

lemsctl --application apache --msg "LOGCYCLE 5"
OK

Now the log file directory will instead contain:

-rw-r--r-- 1 root root 3825 Mar 9 09:34 lems-apache.log.000
-rw-r--r-- 1 root root 59 Mar 9 09:36 lems-apache.log

The older log file has been cycled to the “000” file. Running the same command again would
cycle the logs up to the number specified in the command. Currently it is possible to specify a
number between 1 and 99.

Remember that the command will perform the log cycle on whichever node is currently running
the specified not application - it might not be the local node!

16.8.1 Handling of Compressed Logs

Once a log file has been rotated and been given a three digit numeric extension it is often useful
to compress it to save further space. If this is desired, then any of the following commands are
recommended:

• gzip
• compress
• bzip2

When a log file is compressed using these commands then the additional extension added to
the file name is automatically taken into account when the files are rotated. For example
consider the following log files exist:

lems-apache.log.001.gz
lems-apache.log

After running the “LOGCYCLE” command the log files visible will be:

lems-apache.log.002.gz
lems-apache.log.001
lems-apache.log

Page 119

 Linuxha.net Administrator’s Reference

16.9 Stopping and Starting the Lems Daemon Manually
In almost all circumstances it is not necessary to either stop or start the Lems daemon for a
given application. Under normal operation the starting and stopping of the clustered application
via the standard commands such as “clrunapp” will also start and stop the appropriate Lems
daemon.

However since the daemon can include custom monitors written by administrators it is quite
possible that a running Lems daemon may die due to failures in such a monitor. Because of this
it is useful to understand how to start and stop the daemon manually - and the impact such
actions have on the running application and cluster as a whole.

Hence to stop a running Lems daemon simply use the kill command with the appropriate PID -
for example;

kill $(ps -ef | grep lems-samba | grep -v grep|awk '{print $2}')

However the best approach is to make use of “lemsctl”:

lemsctl --application samba --msg ABORT
OK

Manually starting the lems daemon is also just as straightforward - though the command to type
is somewhat lengthy. For example to start Lems for the again using the “Samba” application as
an example:

lems.pl --detach --application samba --verbose \
 --file /var/log/cluster/lems/lems-samba.log \
 --config /etc/cluster/samba/lems.local.xml

The Lems daemon is critical to operations and so the running cluster daemon on a node will
restart it it a previously running Lems daemon appears to die or stop. Thus killing the Lems
daemon is a good way to force a restart. To simply stop the monitoring use the “lemsctl”
command with the PAUSE option instead.

Page 120

 Linuxha.net Administrator’s Reference

17 Managing Cluster Daemons with “cldaemonctl”
In almost all cases there is no need to actively “manage” the cluster daemons – the processes
run until they are told to stop, suffer from an error, or are killed off. However in certain
circumstances it is often helpful if the administrator is aware of various interactions that are
possible directly from the command line to manage the environment.

17.1 Log File management
Verbose logging is one feature that although optional, is used in almost all environments.
However the cluster daemons can produce a significant amount of output, as this sample “logs”
directory indicates:

root@serverc:/var/log/cluster# ls -lrt
total 13621
-rw-r--r-- 1 root root 0 Jan 17 09:49 clhalt.apache.log
-rw-r--r-- 1 root root 208 Jan 17 09:49 apache.stop.log
-rw-r--r-- 1 root root 265 Jan 17 09:51 apache.start.log
drwxr-xr-x 2 root bin 144 Mar 15 19:24 lems/
-rw-r--r-- 1 root root 3197 Mar 23 19:55 clhalt.log
-rw-r--r-- 1 root root 0 Mar 23 22:28 mysql.stop.errlog
-rw-r--r-- 1 root root 15849 Mar 23 22:32 clstart.mysql.log
-rw-r--r-- 1 root root 1460 Apr 1 22:48 mysql.stop.log
-rw-r--r-- 1 root root 1601 Apr 1 22:48 mysql.start.log
-rw-r--r-- 1 root root 6221 Apr 1 22:48 clhalt.mysql.log
-rw-r--r-- 1 root root 330 Apr 2 22:57 samba.start.log
-rw-r--r-- 1 root root 99 Apr 2 22:57 samba.start.errlog
-rw-r--r-- 1 root root 32744 Apr 2 23:59 clhalt.samba.log
-rw-r--r-- 1 root root 1276 Apr 3 00:01 samba.stop.errlog
-rw-r--r-- 1 root root 6511 Apr 3 00:19 samba.stop.log
-rw-r--r-- 1 root root 119633 Apr 3 00:23 clstart.samba.log
-rw-r--r-- 1 root root 11713982 Apr 3 14:53 cldaemon-cluster2.log

Notice that the log files written by Lems are kept in a separate sub-directory. Management of
Lems logs files has been previously discussed on page 118. This directory contains a collection
of logs, some related to the cluster overall, others to individual applications. The naming
schemes for each log file, and the contents are explained next.

17.1.1 Application Specific Logs

In this directory the administrator will find logs with the following format:

<application>.(start|stop).(log|errlog)

These are log files generated by the “clstartapp” and “clhaltapp“ tools when a specified
application starts or stops respectively. The “log” and “errlog” refer to the standard out and
standard error messages that are generated during that process.

Theses files are typically very small since they only capture output that has been missed by the
main logging functions. Since these files are used only occasionally the recommended cause of
action is to simply delete them once older than a certain period of time (typically 30 days). If
application start-ups / shut-downs occur frequently a better approach would be to “tail” them -
just keep the most recent 1000 lines for example.

17.1.2 Clstartapp and Clhaltapp specific Logs

Apart from capturing the output of the start-up and shut-down of the applications, the “clstartapp”
and “clhaltapp” commands also generate detailed logs (when in verbose mode), describing the
various steps and actions they take once invoked. Obviously the size of the logs really depend
on how often the applications start and stop, though sizes of up to a 1Mb are not uncommon.

The format of these log files is:

(clstart|clhalt).<application>.log

Page 121

 Linuxha.net Administrator’s Reference

Again these files are only written to and kept open during the start-up and shut-down of an
application, and hence can be handled via a log rotation tool, (such as Skulker), to ensure that
only recent log information is kept. However outright deletion of these files is discouraged – they
may contain useful information on error conditions.

17.1.3 Cluster daemon log files

Apart from Lems logs the cluster daemon is likely to produce the largest log files. For a long
running cluster it is possible to generate logs of larger than 50 Mb – though the size of logs
generation for version 1.0.0 is less than previous versions since most debugging output is only
logged optionally. However, as with the Lems daemon logs, this log file can not simply be
removed – since it is kept open at all times.

However the utility “cldaemonctl” for which this section is actually for, provides some facilities to
handle log file management – in the same manner as was explained for Lems daemons.

The first function that is available is that it is possible to turn the verbosity of the daemon on the
local machine on or off. To turn logging off, the administrator would run the following command:

cldaemonctl --msg "VERBOSE off=true"
OK LOGGING=OFF

This will turn the logging off for the local cluster daemon only – it would need to be run on both
nodes to turn off verbosity on both cluster daemons. A short-cut is available if both daemons are
to be changed, namely the use of the “FORWARD” action:

cldaemonctl --msg "VERBOSE on=true forward=yes"
OK LOGGING=ON

The above example turns back on logging - for both nodes if both have running cluster
daemons.

However even if verbosity is turned off the log file remains open – meaning that it can not be
freely managed by a log management tool. However like Lems the cluster daemon has a built
in log cycle tool that is used in the same way:

cldaemonctl --msg "LOGCYCLE count=3 forward=yes"
OK

The above command will stop logging to the current log and create a log with the following
name:

cldaemon-<clustername>.log.000

If such a file already exists it is renamed first to “.001”. This process continues to ensure that at
most “count” (given in the “cldaemonctl” arguments) log files are kept. Count can be any number
from 1 to 99.

17.2 Resetting Application Fail-over Capability
Once a clustered application has suffered from several software re-starts on the same node it
will (depending on the “process monitor” configuration in Lems), fail-over the application to the
other node in the cluster. Such a fail-over is known as a “software fail-over” - that is it is thought
that some software condition on the original server was causing the application to fail. Following
such a fail-over the administrator will notice that fail-back to the original node is not possible:

clstat | egrep "App|apache"
 Application Node State Started Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:03 Running 0 No

Page 122

 Linuxha.net Administrator’s Reference

This indicates that the application has previously failed-over to the other node, and since it was
a software fault rather than a hardware failure, the cluster daemons will not allow fail-back to the
original node.

The reasoning behind this approach is that until the condition that caused the software failures
on the original node are fixed there is little point failing back to this node. These flag conditions
are defined per-application so when “samba” has such a software problem other applications
(such as “apache” in the sample configuration), will remain unaffected.

If the administrator is happy to allow fail-back to the original node to take place the
“cldaemonctl” command can be used to reset the list of nodes that the application considers
valid. For example to reset the “apache” application to ensure fail-back to the original node is
available, run the following command on either node:

cldaemonctl --msg "SETVALIDNODES app=apache forward=yes"
OK

As usual, the “forward=yes” is given to ensure the valid application status is changed on both
nodes - this is obviously important!

The responses from the cluster daemon, as typical, are very terse, typically “OK” or another
single word to give an indication of the problem. In this case running the “clstat” command again
gives:

clstat | egrep "App|apache"
 Application Node State Started Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:-50 Running 0 Yes

17.3 Stopping Application Fail-over Capability
There are occasions when the administrator does not want the application to software fail-over
to the other node. In these situations it is possible for the administrator to indicate that the
application should just halt, rather than restart on the other node.

One way of stopping the application from restarting is to simply stop the relevant process
monitor. Considering the “samba” application:

 Process Monitors

 Name Status Restarts Current Reset at
 smbd Running 1 0 N/A

The monitor could be disabled by running:

lemsctl --application samba --msg "PAUSE smbd"
smbd PAUSED

Such operations have been shown and explained in the previous chapter. However an
alternative is to allow the process monitor to continue to perform a limited number of local
restarts, but not to be able to restart the application on the remote node.

This is possible by using the “SETVALIDNODES” message, which would be used in the
following manner:

cldaemonctl --msg "SETVALIDNODES app=samba nodes=sl4s1 forward=yes"
OK

Now running “clstat” will indicate that fail-over for that application is not available.

If the “smbd” monitor process was re-started and the application (software) did fail it would be
shut-down and not started on the other node since that node is not considered valid.

Page 123

 Linuxha.net Administrator’s Reference

17.4 Checking Cluster Status in a Script
It is often useful to be able to ascertain the status of the cluster from within a shell script. For
advanced details of the cluster status the most obvious answer is to parse the output of the
“clstat” command, though this is not actually necessary.

The easiest way is to simply do the following:

cldaemonctl --msg ECHO

If the cluster is running this will return “UP”, and if it is down it will return a string starting with
“ERROR”.

Please note although it is possible to simply check the for existence of the cluster daemon,
using a command such as:

if [[-n “$(ps -ef | awk '$NF == "cldaemon-cluster2"')”]]
then

echo “cluster running”
fi

This type of solution is not recommended for two reasons;

• The name of the process is not guaranteed to remain the same for later releases – hence it
might cause problems when you the software is upgraded.

• Checking for the existence on a single node is not a guarantee that the cluster is not
functioning. If the administrator wishes to check the process table for cluster status, then it
should be done on both nodes.

The “cldaemonctl” can be run on either node in the cluster, and it will connect to the local or
remote cluster daemon as necessary - and hence the script using it does not need to worry
about which nodes are in or out of the cluster.

17.5 Starting and Stopping Applications
Although not the preferred option it is possible to to actually start applications using the
“cldaemonctl” routine. In this instance the application will get started on whichever node
receives the request – which is the local machine if it is part of the cluster, the remote machine
otherwise.

To actually start the application simply run the following command:

cldaemonctl --msg "START_APP app=apache"
OK

No other arguments are accepted. Since this command is sent directly to a cluster daemon it
has some interesting characteristics. It examines the application configuration take-over settings
to see if it should exactly do what has been requested. If the takeover setting is “normal” rather
than “force” then it will abort if any “STALE” flags exist on this host for this host.

If “STALE” flags do exist, but the takeover setting is “force” they are deleted before attempting to
start the application in force mode.

For the current releases these STALE flags are not yet created - though future releases may
reintroduce them (probably created via the “fsmonitor” Lems monitor).

In a similar way it is possible to stop the application simply by running:

cldaemonctl --msg "STOP_APP app=apache"

However this needs to be run on the node which currently has the application running otherwise
the response returned is:

NOT_RUNNING

Page 124

 Linuxha.net Administrator’s Reference

The expected response is:

OK <pid>

The PID returned is the process ID of the “clhaltapp” command that is used to stop the
application. This is useful because the request is handled asynchronously – simply expecting
the application to have halted when the “cldaemonctl” call returns is not a valid method of
waiting for the application to halt. Instead if the specified process ID no longer exists then the
application should have stopped.

Page 125

 Linuxha.net Administrator’s Reference

18 Managing Configured Applications
Over time existing applications typically need to change - and ideally such changes should be
able to take place whilst the application in question is still up and running. Linuxha.net is
designed to work in exactly this way. The “clbuildapp” can not only be used to build new
applications, it can also be used to alter existing ones. Using this utility it is also possible to do
the following:

• Addition of new File systems
Allows new file systems to be added to an existing application using just a single command -
even if the application in question is currently running.

• Removal of existing File systems
Remove one or more file systems from an application with just a single command - again
even if the application is currently running.

• Changing existing File systems
Allows existing file systems to be expanded, or mount options changed. If the file system
type in use is supported9, it is possible to grow file systems whilst the application is up and
running.

• Modification of application parameters
If IP addresses need to be added, volume groups changed for example. Currently the
changes can be made “online”, but the changes will online take affect when the application is
restarted.

18.1 Adding new file systems
There are essentially two different ways of adding new file systems to an existing application;

Ø On-line - the application in question is currently up and available for client access.
Ø Off-line - performed when the application is not running in the cluster. The cluster itself, and

other applications may or may not be running at the time.

Each will be explained separately. The administrator is free to choose which method to use, the
results are equally the same.

18.1.1 On-line Addition of file systems

All the steps in this section must take place on the node where the application is currently
running (unless stated otherwise). The first thing is to add the new logical volume on the “live”
node for the application, for example:

lvcreate -L 50m -n data2 apachevg

Once created the administrator may optionally perform the same step on the other node. This is
optional - and is only necessary if the adminsitrator wishes to ensure the logical volume is
created an certain physical disks in the volume group.

9 Currently jfs, reiserfs and xfs are supported. ext3 support is built in to the software but is untested since the kernel
changes required to support on-line file system expansion for ext3 are not commonly in use as yet.

Page 126

 Linuxha.net Administrator’s Reference

At this point it will be necessary to create the file system, file system mount point and mount it,
all on the “live” machine:

mkfs -t xfs /dev/apachevg/data2
meta-data=/dev/apachevg/data2 isize=256 agcount=3, agsize=4096 blks
 = sectsz=512
data = bsize=4096 blocks=12288, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=1200, version=1
 = sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0
mkdir /apache/data2
chmod 555 /apache/data2
mount /dev/apachevg/data2 /apache/data2
chmod 555 /apache/data2

The following points should be remembered:

Ø The file system is mounted as part of the local storage on the node - no replication is
currently taking place.

Ø The mount point and permissions must be replicated on the other node
Ø The file system does not need to be created or mounted on the other node
Ø None of the changes so far affect the cluster or application configuration
Ø Only add file systems when both nodes are available and are running in the cluster.

Thus before continuing the administrator should ensure the mount point and permissions are set
the same by running the following on the other node:

mkdir /apache/data2
chmod 555 /apache/data2

At this point, consider the “df” output on the server where the “apache” application is currently
live:

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 2016016 1803048 110556 95% /
none 128020 0 128020 0% /dev/shm
/dev/drbd13 11584 48 11536 1% /samba/cfg
/dev/drbd14 11584 460 11124 4% /samba/logs
/dev/drbd12 44352 64 44288 1% /samba/shares
/dev/drbd0 126272 316 125956 1% /apache
/dev/mapper/apachevg-data2
 44352 64 44288 1% /apache/data2

The new file system is using the “/dev/mapper/apachevg-data2” device rather than a “DRBD”
device, verifying that it is only locally available storage. It also appears that the “samba”
application is running on this node as well at present, though that is of no consequence.

Now the application must be rebuilt. First the “clbuildapp” command is run with the “--vgbuild”
option on the live node. The “-F” is necessary since the application is already defined and is
actually running.

clbuildapp -A apache -V -F --vgbuild
INFO 27/06/2005 12:33:12 Backups directory defaulted to /clbackup
INFO 27/06/2005 12:33:13 Attempting to backup cluster configuration on node sl4s1.
INFO 27/06/2005 12:33:13 Saved cluster configuation in 38244 bytes on node sl4s1
INFO 27/06/2005 12:33:13 Attempting to backup cluster configuration on node sl4s2.
INFO 27/06/2005 12:33:13 Saved cluster configuation in 11537 bytes on node sl4s2
INFO 27/06/2005 12:33:14 Validated clconf.xml is consistent on both nodes
. . .
INFO 27/06/2005 12:33:15 Preferred_node parameter present and valid.
WARN 27/06/2005 12:33:15 Application rebuild selected for running application.
INFO 27/06/2005 12:33:15 Number of networks to validate: 1
WARN 27/06/2005 12:33:15 Multiple IP addresses detected for network prod.
INFO 27/06/2005 12:33:15 Validated network prod defined in cluster topology.
WARN 27/06/2005 12:33:15 Network prod missing netmask - will use default.

Page 127

 Linuxha.net Administrator’s Reference

WARN 27/06/2005 12:33:15 Network prod missing broadcast - will use default.
INFO 27/06/2005 12:33:15 Validated network prod attributes.
INFO 27/06/2005 12:33:15 Status directory on sl4s1 already exists.
INFO 27/06/2005 12:33:15 Validated/created status directory on sl4s2
INFO 27/06/2005 12:33:15 REBUILD: Original fsmap entry count: 1
INFO 27/06/2005 12:33:15 Getting list of defined volume groups on sl4s2
INFO 27/06/2005 12:33:16 VG apachevg does not contain LV data2_meta on sl4s1 -
creating...
INFO 27/06/2005 12:33:16 VG/LV apachevg/data2_meta of 131072Kb built on sl4s1
INFO 27/06/2005 12:33:16 Validated Meta volume exists for lv01 (and is 128mb)
INFO 27/06/2005 12:33:16 VG apachevg does not contain LV data2 on sl4s2 - creating...
INFO 27/06/2005 12:33:17 VG/LV apachevg/data2 of 53248Kb built on sl4s2
INFO 27/06/2005 12:33:18 VG apachevg does not contain LV data2_meta on sl4s2 -
creating...
INFO 27/06/2005 12:33:18 VG/LV apachevg/data2_meta of 131072Kb built on sl4s2
INFO 27/06/2005 12:33:19 All LV checks on VG apachevg completed
INFO 27/06/2005 12:33:19
INFO 27/06/2005 12:33:19 Now run with the --build to ensure all required resources
INFO 27/06/2005 12:33:19 are allocated on both nodes
INFO 27/06/2005 12:33:19

followed by:

clbuildapp -A apache -V -F --build
. . .
WARN 27/06/2005 12:42:24 Application rebuild selected for running application.
INFO 27/06/2005 12:42:24 Number of networks to validate: 1
WARN 27/06/2005 12:42:24 Multiple IP addresses detected for network prod.
INFO 27/06/2005 12:42:24 Validated network prod defined in cluster topology.
WARN 27/06/2005 12:42:24 Network prod missing netmask - will use default.
WARN 27/06/2005 12:42:24 Network prod missing broadcast - will use default.
INFO 27/06/2005 12:42:24 Validated network prod attributes.
INFO 27/06/2005 12:42:24 Status directory on sl4s1 already exists.
INFO 27/06/2005 12:42:25 Validated/created status directory on sl4s2
INFO 27/06/2005 12:42:25 Validated VG build run has completed against this
configuration.
INFO 27/06/2005 12:42:25 REBUILD: Original fsmap entry count: 1
INFO 27/06/2005 12:42:25 LVM on sl4s1 appears to be version 2
INFO 27/06/2005 12:42:25 LVM on sl4s2 appears to be version 2
INFO 27/06/2005 12:42:25 Checked volume groups exist on sl4s1
INFO 27/06/2005 12:42:25 Checked volume groups exist on sl4s2
INFO 27/06/2005 12:42:25 checking if apachevg/data2 open...
INFO 27/06/2005 12:42:25 checking if apachevg/lv01 mounted as /apache...
INFO 27/06/2005 12:42:25 Checked 4 logical volumes for apachevg on sl4s1
INFO 27/06/2005 12:42:25 Completed volume group analysis on sl4s1:
INFO 27/06/2005 12:42:25 VG: apachevg Used LVs: 4 Not Used LVs: 0
INFO 27/06/2005 12:42:25 sl4s1 available: PORTS: 95, DRBD: 43
INFO 27/06/2005 12:42:26 sl4s2 available: PORTS: 95, DRBD: 43
INFO 27/06/2005 12:42:26 REBUILD: Validated enough resources available on both nodes
INFO 27/06/2005 12:42:26 REBUILD: Ports/DRBD resources required: 1
INFO 27/06/2005 12:42:26 Host/VG/LV sl4s1/apachevg/data2 allocated port 9905
INFO 27/06/2005 12:42:27 Host/VG/LV sl4s2/apachevg/data2 allocated port 9905
INFO 27/06/2005 12:42:27 Host/VG/LV sl4s1/apachevg/data2 allocated DRBD 15
INFO 27/06/2005 12:42:28 Host/VG/LV sl4s2/apachevg/data2 allocated DRBD 15
INFO 27/06/2005 12:42:28 Host/VG/LV sl4s1/apachevg/lv01 allocated port 9901
INFO 27/06/2005 12:42:28 Host/VG/LV sl4s2/apachevg/lv01 allocated port 9901
INFO 27/06/2005 12:42:28 Host/VG/LV sl4s1/apachevg/lv01 allocated DRBD 0
INFO 27/06/2005 12:42:29 Host/VG/LV sl4s2/apachevg/lv01 allocated DRBD 0
INFO 27/06/2005 12:42:29 Validated/created application status directory on sl4s2
INFO 27/06/2005 12:42:29 REBUILD: Current fsmap being replaced on sl4s1.
INFO 27/06/2005 12:42:29 Validated/created fsmap directory on sl4s1
INFO 27/06/2005 12:42:29 Validated/created fsmap directory on sl4s2
INFO 27/06/2005 12:42:30 Validated/created application config directory on sl4s2
INFO 27/06/2005 12:42:30 Copied config data for apache to sl4s2
INFO 27/06/2005 12:42:30 REBUILD: Getting details for /samba/cfg from old fsmap...
WARN 27/06/2005 12:42:30 Unable to get information for /samba/cfg ... ignoring!!
INFO 27/06/2005 12:42:30 REBUILD: Getting details for /samba/logs from old fsmap...
WARN 27/06/2005 12:42:30 Unable to get information for /samba/logs ... ignoring!!
INFO 27/06/2005 12:42:30 REBUILD: Getting details for /samba/shares from old fsmap...
WARN 27/06/2005 12:42:30 Unable to get information for /samba/shares ... ignoring!!
INFO 27/06/2005 12:42:30 REBUILD: Getting details for /apache from old fsmap...
INFO 27/06/2005 12:42:30 REBUILD: Written apachevg:lv01:/apache:xfs:rw:131072
INFO 27/06/2005 12:42:31 Validated file system mount point /apache/data2
INFO 27/06/2005 12:42:31 REBUILD: Removing original fsmap file on sl4s1.
INFO 27/06/2005 12:42:31 REBUILD: Recreated fsmap data for apache on sl4s1

Page 128

 Linuxha.net Administrator’s Reference

INFO 27/06/2005 12:42:32 Copied fsmap data for apache to sl4s2
INFO 27/06/2005 12:42:32 REBUILD: Un-mounted local /apache/data2.
INFO 27/06/2005 12:42:33 REBUILD: DRBD device for /apache/data2 started to
synchronise.
INFO 27/06/2005 12:42:33 REBUILD: Fsck for /apache/data2; "/sbin/fsck -t xfs -a
/dev/drbd15"...
INFO 27/06/2005 12:42:33 REBUILD: Mounting file system /apache/data2
(PATH=$PATH:/sbin:/bin:/usr/sbin; mount -t xfs -o rw /dev/drbd15 /apache/data2)
INFO 27/06/2005 12:42:34 REBUILD: File system /apache/data2 mounted successfully.
INFO 27/06/2005 12:42:34 Application apache now (re)registered with cluster.
INFO 27/06/2005 12:42:34 Lems response to reconfigure: OK
INFO 27/06/2005 12:42:34 Transfering XML file lems.local.xml to sl4s2.
INFO 27/06/2005 12:42:34 Transfering XML file httpd.xml to sl4s2.
INFO 27/06/2005 12:42:35
INFO 27/06/2005 12:42:35 Cluster build has completed successfully.
INFO 27/06/2005 12:42:35 The rebuild addition / removal of file systems has been
INFO 27/06/2005 12:42:35 completed without problems. Please note that the new file
systems
INFO 27/06/2005 12:42:35 may still be in the process of being synchronised.
INFO 27/06/2005 12:42:35

There is no requirement to explicitly attempt to synchronise the new storage - that will be done
automatically.

In the above output messages checking file systems in other volume groups, (“samba” in this
case) are shown - that will be resolved for version 1.0.0 onwards.

At this point the file system will have been remounted to work using a DRBD device, and so can
be readily used by the application from this point onwards. Validate this fact using “df”:

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 2016016 1803204 110400 95% /
none 128020 0 128020 0% /dev/shm
/dev/drbd13 11584 48 11536 1% /samba/cfg
/dev/drbd14 11584 460 11124 4% /samba/logs
/dev/drbd12 44352 64 44288 1% /samba/shares
/dev/drbd0 126272 316 125956 1% /apache
/dev/drbd15 44352 64 44288 1% /apache/data2

The “fsmonitor” Lems sub-system is reloaded for the application thus ensuring data
synchronisation to start automatically for the new file system after a short period of time. Again
use the “clstat” to validate this fact:

clstat -A apache
Cluster: sl4cluster - UP

 Application Node State Runnnig Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:15 Running 1 Yes

 File Systems

 Mount Point Valid Type State % Complete Completion
 /apache both drbd Sync
 /apache/data2 local drbd Syncing 29 % 0:04:12:00

 Process Monitors

 Name Status Restarts Current Reset at
 httpd Running 3 0 N/A

 General Monitors

 Type Name Status
 Flag Check flag_check Running
 FS Monitor fsmonitor Running
 IP Monitor ipcheck Running

At this point the file system is ready to use and no further work will be necessary.

Page 129

 Linuxha.net Administrator’s Reference

18.1.2 Off-line Addition of file systems

Off-line changes are more difficult! This is due to the fact that the references to existing and
current configuration that an on-line change can make use of are not present. Thus off-line
changes are discouraged if possible.

To make an off-line change please ensure the following all commands are run on the
“primary” node (unless stated otherwise) - that is the node that is defined first in the cluster
configuration.

Firstly the administrator must manually mount ALL the file systems that are being used as part
of the application, using the local storage devices - even those that are currently defined:

mount /dev/apachevg/lv01 /apache

At this point the new logical volume should be created on the local machine, the file system
created and then mounted at the required location:

lvcreate -L 1g -n data2 vg02

Once created the administrator may optionally perform the same step on the other node. This is
optional - and is only necessary if the administrator wishes to ensure the logical volume is
created an certain physical disks in the volume group.

Continue with the necessary commnds:

mkfs -t xfs /dev/apachevg/data2
mkdir /apache/data2
chmod 555 /apache/data2
mount /dev/apachevg/data2 /apache/data2
chmod 555 /apache/data2

Ensure the same directory path and permissions are available on the other node:

mkdir /apache/data2
chmod 555 /apache/data2

Now the administrator can run the commands necessary to perform the off-line rebuild:

clbuildapp -A apache -V -F --vgbuild
INFO 27/06/2005 13:05:45 Current status of application apache is: DOWN
INFO 27/06/2005 13:05:45 Number of networks to validate: 1
WARN 27/06/2005 13:05:45 Multiple IP addresses detected for network prod.
INFO 27/06/2005 13:05:45 Validated network prod defined in cluster topology.
WARN 27/06/2005 13:05:45 Network prod missing netmask - will use default.
WARN 27/06/2005 13:05:45 Network prod missing broadcast - will use default.
INFO 27/06/2005 13:05:45 Validated network prod attributes.
INFO 27/06/2005 13:05:45 Status directory on sl4s1 already exists.
INFO 27/06/2005 13:05:45 Validated/created status directory on sl4s2
INFO 27/06/2005 13:05:45 Getting list of defined volume groups on sl4s2
INFO 27/06/2005 13:05:46 VG apachevg does not contain LV data2_meta on sl4s1 -
creating...
INFO 27/06/2005 13:05:46 VG/LV apachevg/data2_meta of 131072Kb built on sl4s1
INFO 27/06/2005 13:05:46 Validated Meta volume exists for lv01 (and is 128mb)
INFO 27/06/2005 13:05:46 VG apachevg does not contain LV data2 on sl4s2 - creating...
INFO 27/06/2005 13:05:47 VG/LV apachevg/data2 of 53248Kb built on sl4s2
INFO 27/06/2005 13:05:48 VG apachevg does not contain LV data2_meta on sl4s2 -
creating...
INFO 27/06/2005 13:05:48 VG/LV apachevg/data2_meta of 131072Kb built on sl4s2
INFO 27/06/2005 13:05:48 All LV checks on VG apachevg completed
INFO 27/06/2005 13:05:49
INFO 27/06/2005 13:05:49 Now run with the --build to ensure all required resources
INFO 27/06/2005 13:05:49 are allocated on both nodes
INFO 27/06/2005 13:05:49

Page 130

 Linuxha.net Administrator’s Reference

Followed by:

clbuildapp -A apache -V -F --build --fsmap
INFO 27/06/2005 13:14:43 Current status of application apache is: DOWN
INFO 27/06/2005 13:14:43 Number of networks to validate: 1
WARN 27/06/2005 13:14:43 Multiple IP addresses detected for network prod.
INFO 27/06/2005 13:14:43 Validated network prod defined in cluster topology.
WARN 27/06/2005 13:14:43 Network prod missing netmask - will use default.
WARN 27/06/2005 13:14:43 Network prod missing broadcast - will use default.
INFO 27/06/2005 13:14:43 Validated network prod attributes.
INFO 27/06/2005 13:14:43 Status directory on sl4s1 already exists.
INFO 27/06/2005 13:14:43 Validated/created status directory on sl4s2
INFO 27/06/2005 13:14:43 Validated VG build run has completed against this
configuration.
INFO 27/06/2005 13:14:43 REBUILD: Original fsmap entry count: 1
INFO 27/06/2005 13:14:43 LVM on sl4s1 appears to be version 2
INFO 27/06/2005 13:14:44 LVM on sl4s2 appears to be version 2
INFO 27/06/2005 13:14:44 Checked volume groups exist on sl4s1
INFO 27/06/2005 13:14:44 Checked volume groups exist on sl4s2
WARN 27/06/2005 13:14:44 Running --build for an existing application, whilst
WARN 27/06/2005 13:14:44 that application is not running will not update
WARN 27/06/2005 13:14:44 the file system mappings. If this is required for
WARN 27/06/2005 13:14:44 an existing application please start it first.
INFO 27/06/2005 13:14:44 checking if apachevg/data2 open...
INFO 27/06/2005 13:14:44 Checked 4 logical volumes for apachevg on sl4s1
INFO 27/06/2005 13:14:44 Completed volume group analysis on sl4s1:
INFO 27/06/2005 13:14:44 VG: apachevg Used LVs: 4 Not Used LVs: 0
INFO 27/06/2005 13:14:44 sl4s1 available: PORTS: 95, DRBD: 43
INFO 27/06/2005 13:14:44 sl4s2 available: PORTS: 95, DRBD: 43
INFO 27/06/2005 13:14:44 REBUILD: Validated enough resources available on both nodes
INFO 27/06/2005 13:14:44 REBUILD: Ports/DRBD resources required: 1
INFO 27/06/2005 13:14:45 Host/VG/LV sl4s1/apachevg/data2 allocated port 9905
INFO 27/06/2005 13:14:46 Host/VG/LV sl4s2/apachevg/data2 allocated port 9905
INFO 27/06/2005 13:14:46 Host/VG/LV sl4s1/apachevg/data2 allocated DRBD 15
INFO 27/06/2005 13:14:46 Host/VG/LV sl4s2/apachevg/data2 allocated DRBD 15
INFO 27/06/2005 13:14:46 Host/VG/LV sl4s1/apachevg/lv01 allocated port 9901
INFO 27/06/2005 13:14:47 Host/VG/LV sl4s2/apachevg/lv01 allocated port 9901
INFO 27/06/2005 13:14:47 Host/VG/LV sl4s1/apachevg/lv01 allocated DRBD 0
INFO 27/06/2005 13:14:47 Host/VG/LV sl4s2/apachevg/lv01 allocated DRBD 0
INFO 27/06/2005 13:14:48 Validated/created application status directory on sl4s2
INFO 27/06/2005 13:14:48 REBUILD: Current fsmap being replaced on sl4s1.
INFO 27/06/2005 13:14:48 Validated/created fsmap directory on sl4s1
INFO 27/06/2005 13:14:48 Validated/created fsmap directory on sl4s2
INFO 27/06/2005 13:14:48 Validated/created application config directory on sl4s2
INFO 27/06/2005 13:14:48 Copied config data for apache to sl4s2
INFO 27/06/2005 13:14:48 REBUILD: Removing original fsmap file on sl4s1.
INFO 27/06/2005 13:14:48 REBUILD: Recreated fsmap data for apache on sl4s1
INFO 27/06/2005 13:14:49 Copied fsmap data for apache to sl4s2
INFO 27/06/2005 13:14:49 Application apache now (re)registered with cluster.
INFO 27/06/2005 13:14:49 Transfering XML file lems.local.xml to sl4s2.
INFO 27/06/2005 13:14:49 Transfering XML file httpd.xml to sl4s2.
INFO 27/06/2005 13:14:50
INFO 27/06/2005 13:14:50 Cluster build has completed successfully.
INFO 27/06/2005 13:14:50 The rebuild addition / removal of file systems has been
INFO 27/06/2005 13:14:50 completed without problems. Please note that the new file
systems
INFO 27/06/2005 13:14:50 may still be in the process of being synchronised.
INFO 27/06/2005 13:14:50

The “--fsmap” flag is very important in the above command.

If it is was not used for the “--build” stage, the following command would need to be run on each
node in order to update the “fsmap” file manually.

echo "apachevg:data2:/apache/data2:xfs:rw:$((52*1024))" \
 >>/etc/cluster/.resources/fsmap/apache

Page 131

 Linuxha.net Administrator’s Reference

Unlike the on-line build it is necessary to include an explicit synchronisation;

clbuildapp -A apache -V -F --sync
. . .
INFO 27/06/2005 13:24:16 Loading details of file systems to unmount
INFO 27/06/2005 13:24:16 File system /apache/data2 un-mounted
INFO 27/06/2005 13:24:16 File system /apache un-mounted
INFO 27/06/2005 13:24:17 All file systems un-mounted successfully.
INFO 27/06/2005 13:24:17 Some/all drbd devices need configuration on sl4s1
INFO 27/06/2005 13:24:18 All drbd services now running on sl4s1
INFO 27/06/2005 13:24:19 Attempted to start new drbd services on sl4s2
INFO 27/06/2005 13:24:20 All drbd services now running on sl4s2
INFO 27/06/2005 13:24:21 Successfully started rebuild of DRBD devices for apache.
INFO 27/06/2005 13:24:21 Sync status: Devices sync'ed: 1, Devices unsync'ed: 0
INFO 27/06/2005 13:24:21 Sync status: Currently syncing LV /dev/apachevg/data2, 0.8%
completed
INFO 27/06/2005 13:24:26 Sync status: Devices sync'ed: 1, Devices unsync'ed: 0
INFO 27/06/2005 13:24:26 Sync status: Currently syncing LV /dev/apachevg/data2, 19.2%
completed
INFO 27/06/2005 13:24:31 Sync status: Devices sync'ed: 1, Devices unsync'ed: 0
INFO 27/06/2005 13:24:31 Sync status: Currently syncing LV /dev/apachevg/data2, 37.5%
completed
INFO 27/06/2005 13:24:36 Sync status: Devices sync'ed: 1, Devices unsync'ed: 0
INFO 27/06/2005 13:24:36 Sync status: Currently syncing LV /dev/apachevg/data2, 56.3%
completed
INFO 27/06/2005 13:24:41 Sync status: Devices sync'ed: 1, Devices unsync'ed: 0
INFO 27/06/2005 13:24:41 Sync status: Currently syncing LV /dev/apachevg/data2, 74.7%
completed
INFO 27/06/2005 13:24:46 Sync status: Devices sync'ed: 1, Devices unsync'ed: 0
INFO 27/06/2005 13:24:46 Sync status: Currently syncing LV /dev/apachevg/data2, 93.4%
completed
INFO 27/06/2005 13:24:51 Sync status: Devices sync'ed: 2, Devices unsync'ed: 0
INFO 27/06/2005 13:24:51 All logical volumes on remote host sl4s2 synchronised
INFO 27/06/2005 13:24:51 Stopping DRBD on sl4s1 devices.
INFO 27/06/2005 13:24:52 Stopping DRBD on sl4s2 devices.
INFO 27/06/2005 13:24:53
INFO 27/06/2005 13:24:53 Successfully Synchronised data from sl4s1 to sl4s2
INFO 27/06/2005 13:24:53

Once the standard “--sync” option has been run, the following command MUST ALSO BE RUN:

clbuildapp -A apache -V -F --sync --forcesync

The synchronisation steps are absolutely necessary here, since all file systems were mounted
locally. Failure to do both steps will result in data corruption across all file systems for the
specified application.

Because of the above warning it is reiterated that off-line rebuilds of applications are
discouraged!

18.2 Removing existing file systems
In a similar way to adding new file systems, existing file systems can be removed in basically
the same two ways;

Ø On-line - Whilst the application is up and running file systems can be removed without
disturbing existing client access.

Ø Off-line - Reconfigure the application environment whilst it is not running. The cluster and
other clustered application may or may not be running.

18.2.1 On-line Removal of File systems

On the node running the application simply un-mount any file systems that are no longer
required, for example:

umount /apache/data2

Page 132

 Linuxha.net Administrator’s Reference

Any processes that make use of the file system will obviously need to be stopped and
reconfigured if necessary. If the application is stopped the administrator is reminded to consider
using the “lemsctl -A app --msg PAUSE” command beforehand.

Once un-mounted run the following commands on the node where the application currently
runs:

clbuildapp -A apache -F -V --vgbuild
. . .
WARN 27/06/2005 12:57:31 Application rebuild selected for running application.
INFO 27/06/2005 12:57:31 Number of networks to validate: 1
WARN 27/06/2005 12:57:31 Multiple IP addresses detected for network prod.
INFO 27/06/2005 12:57:31 Validated network prod defined in cluster topology.
WARN 27/06/2005 12:57:31 Network prod missing netmask - will use default.
WARN 27/06/2005 12:57:31 Network prod missing broadcast - will use default.
INFO 27/06/2005 12:57:31 Validated network prod attributes.
INFO 27/06/2005 12:57:31 Status directory on sl4s1 already exists.
INFO 27/06/2005 12:57:32 Validated/created status directory on sl4s2
INFO 27/06/2005 12:57:32 REBUILD: Original fsmap entry count: 2
INFO 27/06/2005 12:57:32 Getting list of defined volume groups on sl4s2
INFO 27/06/2005 12:57:32 Validated Meta volume exists for data2 (and is 128mb)
INFO 27/06/2005 12:57:32 Validated Meta volume exists for lv01 (and is 128mb)
INFO 27/06/2005 12:57:33 All LV checks on VG apachevg completed
INFO 27/06/2005 12:57:34
INFO 27/06/2005 12:57:34 Now run with the --build to ensure all required resources
INFO 27/06/2005 12:57:34 are allocated on both nodes
INFO 27/06/2005 12:57:34

This should be followed by:

clbuildapp -A apache -F -V --build
. . .
WARN 27/06/2005 12:57:57 Application rebuild selected for running application.
WARN 27/06/2005 12:57:57 *** BETA FEATURE ***
INFO 27/06/2005 12:57:57 Number of networks to validate: 1
WARN 27/06/2005 12:57:57 Multiple IP addresses detected for network prod.
INFO 27/06/2005 12:57:57 Validated network prod defined in cluster topology.
WARN 27/06/2005 12:57:57 Network prod missing netmask - will use default.
WARN 27/06/2005 12:57:57 Network prod missing broadcast - will use default.
INFO 27/06/2005 12:57:57 Validated network prod attributes.
INFO 27/06/2005 12:57:57 Status directory on sl4s1 already exists.
INFO 27/06/2005 12:57:57 Validated/created status directory on sl4s2
INFO 27/06/2005 12:57:57 Validated VG build run has completed against this
configuration.
INFO 27/06/2005 12:57:57 REBUILD: Original fsmap entry count: 2
INFO 27/06/2005 12:57:57 LVM on sl4s1 appears to be version 2
INFO 27/06/2005 12:57:57 LVM on sl4s2 appears to be version 2
INFO 27/06/2005 12:57:57 Checked volume groups exist on sl4s1
INFO 27/06/2005 12:57:58 Checked volume groups exist on sl4s2
INFO 27/06/2005 12:57:58 checking if apachevg/data2 mounted as /apache/data2...
INFO 27/06/2005 12:57:58 checking if apachevg/lv01 mounted as /apache...
INFO 27/06/2005 12:57:58 Checked 4 logical volumes for apachevg on sl4s1
INFO 27/06/2005 12:57:58 Completed volume group analysis on sl4s1:
INFO 27/06/2005 12:57:58 VG: apachevg Used LVs: 3 Not Used LVs: 1
INFO 27/06/2005 12:57:58 sl4s1 available: PORTS: 94, DRBD: 42
INFO 27/06/2005 12:57:58 sl4s2 available: PORTS: 94, DRBD: 42
INFO 27/06/2005 12:57:58 REBUILD: No new resources on sl4s1 required.
INFO 27/06/2005 12:58:00 REBUILD: Removed port resource 9905 for apachevg/data2 on
host sl4s1.
INFO 27/06/2005 12:58:00 REBUILD: Removed DRBD resource 15 for apachevg/data2 on host
sl4s1.
INFO 27/06/2005 12:58:00 REBUILD: Removed port resource 9905 for apachevg/data2 on
host sl4s2.
INFO 27/06/2005 12:58:01 REBUILD: Removed DRBD resource 15 for apachevg/data2 on host
sl4s2.
INFO 27/06/2005 12:58:01 Host/VG/LV sl4s1/apachevg/lv01 allocated port 9901
INFO 27/06/2005 12:58:01 Host/VG/LV sl4s2/apachevg/lv01 allocated port 9901
INFO 27/06/2005 12:58:01 Host/VG/LV sl4s1/apachevg/lv01 allocated DRBD 0
INFO 27/06/2005 12:58:02 Host/VG/LV sl4s2/apachevg/lv01 allocated DRBD 0
INFO 27/06/2005 12:58:02 Validated/created application status directory on sl4s2
INFO 27/06/2005 12:58:02 REBUILD: Current fsmap being replaced on sl4s1.
INFO 27/06/2005 12:58:02 Validated/created fsmap directory on sl4s1
INFO 27/06/2005 12:58:02 Validated/created fsmap directory on sl4s2

Page 133

 Linuxha.net Administrator’s Reference

INFO 27/06/2005 12:58:02 Validated/created application config directory on sl4s2
INFO 27/06/2005 12:58:03 Copied config data for apache to sl4s2
INFO 27/06/2005 12:58:03 REBUILD: Getting details for /samba/cfg from old fsmap...
WARN 27/06/2005 12:58:03 Unable to get information for /samba/cfg ... ignoring!!
INFO 27/06/2005 12:58:03 REBUILD: Getting details for /samba/logs from old fsmap...
WARN 27/06/2005 12:58:03 Unable to get information for /samba/logs ... ignoring!!
INFO 27/06/2005 12:58:03 REBUILD: Getting details for /samba/shares from old fsmap...
WARN 27/06/2005 12:58:03 Unable to get information for /samba/shares ... ignoring!!
INFO 27/06/2005 12:58:03 REBUILD: Getting details for /apache from old fsmap...
INFO 27/06/2005 12:58:03 REBUILD: Written apachevg:lv01:/apache:xfs:rw:131072
INFO 27/06/2005 12:58:03 REBUILD: Removing original fsmap file on sl4s1.
INFO 27/06/2005 12:58:03 REBUILD: Recreated fsmap data for apache on sl4s1
INFO 27/06/2005 12:58:03 Copied fsmap data for apache to sl4s2
INFO 27/06/2005 12:58:03 REBUILD: No new file systems currently mounted.
INFO 27/06/2005 12:58:03 Application apache now (re)registered with cluster.
INFO 27/06/2005 12:58:03 Lems response to reconfigure: OK
INFO 27/06/2005 12:58:03 Transfering XML file lems.local.xml to sl4s2.
INFO 27/06/2005 12:58:04 Transfering XML file httpd.xml to sl4s2.
INFO 27/06/2005 12:58:04
INFO 27/06/2005 12:58:04 Cluster build has completed successfully.
INFO 27/06/2005 12:58:04 The rebuild addition / removal of file systems has been
INFO 27/06/2005 12:58:04 completed without problems. Please note that the new file
systems
INFO 27/06/2005 12:58:04 may still be in the process of being synchronised.
INFO 27/06/2005 12:58:04

This process will also ensure that the relevant file system entries that are no longer mounted
and hence removed are also removed from the “fsmap” file - that file which defines which file
systems to mount/un-mount when the application starts or stops.

After the rebuild the administrator can either leave the logical volume or remove it. For example
to remove it (and the associated meta-data logical volume), run the following on both hosts:

lvremove -f /dev/vg02/data2
lvremove -f /dev/vg02/data2_meta

18.2.2 Off-line Removal of File systems

As with the off-line addition of file systems the steps here require the administrator to take more
care, virtually following the same process. Hence again, such off-line file system removals are
discouraged - the on-line method is easier and far less error prone.

Firstly the administrator must manually mount the file systems that are being used as part of the
application, excluding any file systems they wish to remove from the application definition;

mount /dev/vg02/data /apache

Now the administrator can run the commands necessary to perform the off-line rebuild:

clbuildapp -A apache -V -F --vgbuild
INFO 29/06/2005 15:14:28 Current status of application apache is: DOWN
INFO 29/06/2005 15:14:28 Number of networks to validate: 1
WARN 29/06/2005 15:14:28 Multiple IP addresses detected for network prod.
INFO 29/06/2005 15:14:28 Validated network prod defined in cluster topology.
WARN 29/06/2005 15:14:28 Network prod missing netmask - will use default.
WARN 29/06/2005 15:14:28 Network prod missing broadcast - will use default.
INFO 29/06/2005 15:14:28 Validated network prod attributes.
INFO 29/06/2005 15:14:28 Status directory on sl4s1 already exists.
INFO 29/06/2005 15:14:28 Validated/created status directory on sl4s2
INFO 29/06/2005 15:14:28 Getting list of defined volume groups on sl4s2
INFO 29/06/2005 15:14:30 Validated Meta volume exists for data2 (and is 128mb)
INFO 29/06/2005 15:14:30 Validated Meta volume exists for lv01 (and is 128mb)
INFO 29/06/2005 15:14:32 All LV checks on VG apachevg completed
INFO 29/06/2005 15:14:32
INFO 29/06/2005 15:14:32 Now run with the --build to ensure all required resources
INFO 29/06/2005 15:14:32 are allocated on both nodes
INFO 29/06/2005 15:14:32

Page 134

 Linuxha.net Administrator’s Reference

Followed by:

clbuildapp -A apache -V -F --build
. . .
INFO 29/06/2005 15:15:22 REBUILD: Original fsmap entry count: 2
INFO 29/06/2005 15:15:22 LVM on sl4s1 appears to be version 2
INFO 29/06/2005 15:15:23 LVM on sl4s2 appears to be version 2
INFO 29/06/2005 15:15:23 Checked volume groups exist on sl4s1
INFO 29/06/2005 15:15:23 Checked volume groups exist on sl4s2
INFO 29/06/2005 15:15:23 checking if apachevg/data2 mounted as /apache/data2...
INFO 29/06/2005 15:15:23 checking if apachevg/lv01 mounted as /apache...
INFO 29/06/2005 15:15:23 Checked 4 logical volumes for apachevg on sl4s1
INFO 29/06/2005 15:15:23 Completed volume group analysis on sl4s1:
INFO 29/06/2005 15:15:23 VG: apachevg Used LVs: 3 Not Used LVs: 1
INFO 29/06/2005 15:15:23 sl4s1 available: PORTS: 94, DRBD: 42
INFO 29/06/2005 15:15:24 sl4s2 available: PORTS: 94, DRBD: 42
INFO 29/06/2005 15:15:24 REBUILD: No new resources on sl4s1 required.
INFO 29/06/2005 15:15:26 REBUILD: Removed port resource 9905 for apachevg/data2 on
host sl4s1.
INFO 29/06/2005 15:15:26 REBUILD: Removed DRBD resource 15 for apachevg/data2 on host
sl4s1.
INFO 29/06/2005 15:15:27 REBUILD: Removed port resource 9905 for apachevg/data2 on
host sl4s2.
INFO 29/06/2005 15:15:27 REBUILD: Removed DRBD resource 15 for apachevg/data2 on host
sl4s2.
INFO 29/06/2005 15:15:27 Host/VG/LV sl4s1/apachevg/lv01 allocated port 9901
INFO 29/06/2005 15:15:28 Host/VG/LV sl4s2/apachevg/lv01 allocated port 9901
INFO 29/06/2005 15:15:28 Host/VG/LV sl4s1/apachevg/lv01 allocated DRBD 0
INFO 29/06/2005 15:15:28 Host/VG/LV sl4s2/apachevg/lv01 allocated DRBD 0
INFO 29/06/2005 15:15:29 Validated/created application status directory on sl4s2
INFO 29/06/2005 15:15:29 REBUILD: Current fsmap being replaced on sl4s1.
INFO 29/06/2005 15:15:29 Validated/created fsmap directory on sl4s1
INFO 29/06/2005 15:15:29 Validated/created fsmap directory on sl4s2
INFO 29/06/2005 15:15:29 Validated/created application config directory on sl4s2
INFO 29/06/2005 15:15:30 Copied config data for apache to sl4s2
INFO 29/06/2005 15:15:31 Validated file system mount point /apache
INFO 29/06/2005 15:15:31 REBUILD: Removing original fsmap file on sl4s1.
INFO 29/06/2005 15:15:31 REBUILD: Recreated fsmap data for apache on sl4s1
INFO 29/06/2005 15:15:31 Copied fsmap data for apache to sl4s2
INFO 29/06/2005 15:15:32 Application apache now (re)registered with cluster.
INFO 29/06/2005 15:15:32 Transfering XML file lems.local.xml to sl4s2.
INFO 29/06/2005 15:15:32 Transfering XML file httpd.xml to sl4s2.
INFO 29/06/2005 15:15:33
INFO 29/06/2005 15:15:33 Cluster build has completed successfully.
INFO 29/06/2005 15:15:33 The rebuild addition / removal of file systems has been
INFO 29/06/2005 15:15:33 completed without problems. Please note that the new file
systems
INFO 29/06/2005 15:15:33 may still be in the process of being synchronised.
INFO 29/06/2005 15:15:33

The “--fsmap” is important here since it cases the existing “fsmap” file to be re-built.

Just as with the off-line addition of file systems it is necessary to include an explicit
synchronisation;

clbuildapp -A apache -V -F --sync --forcesync

The forced synchronisation step is absolutely necessary here, since all remaining file systems
were mounted locally. However due to DRBD this synchronisation will appear almost
instantaneous since very little data will actually require replicating to the other node in the
cluster.

18.3 Changing existing file systems
Linuxha.net now supports the ability to modify the size of existing file systems. As with the
addition and removal this can be done on-line or off-line. The facility to grow an existing file
system on-line is determined by the file system, and currently the following have been tested as
working;

Ø reiserfs

Page 135

 Linuxha.net Administrator’s Reference

Ø xfs
Ø jfs

Currently “ext3” support is included but remains untested due the lack of availability of the ext3
on-line resize support. Since the size of the device is part of the meta-data kept for DRBD,
currently it is recommended that the “on-line” method below is followed - it is certainly far more
straightforward.

18.3.1 On-line file system expansion

Unless otherwise specified all commands documented should be run on the node where
the application is currently running. Also the administrator, as with all changes references in
this section, should only attempt to make the changes when both nodes are operating normally.

The first step to perform is to change the underlying size of the local logical volume, for
example:

lvextend -L 2g /dev/vg02/apache

The same action can optionally be performed on the other node in the cluster. If this is not done
the rebuild script will make the change, though of course in this instance the administrator has
no control on which extents will be utilised for the new storage.

Once complete run the following commands to ensure the DRBD device size is increased as
required:

clbuildapp -A apache -V -F --vgbuild
<output here>

Follow this by:

clbuildapp -A apache -V -F --build
<output here>

As can be seen from the output the process of growing the file system can take a little while, the
larger the logical volume the longer it will take. Once the logical volume change has been
handled via the DRBD device the file system is automatically grown.

No other steps are necessary. The new space can be used immediately following the
completion of the “clbuildapp” commands shown.

18.3.2 Off-line file system expansion

This is quite a complex operation due to the fact that the DRBD device meta data must be
updated. Hence the following warning:

Failure to perform all steps here could result in file system corruption.

On the primary node start the DRBD devices for the application:

/sbin/cluster/utils/drbd_tool --action=start --noprimary \
 --application apache

On the other node also start the DRBD devices:

/sbin/cluster/utils/drbd_tool --action=start --noprimary \
 --application apache

On the primary node indicate local devices are “primary”:

/sbin/cluster/utils/drbd_tool --action=set_primary --application apache

Page 136

 Linuxha.net Administrator’s Reference

At this point the logical volumes can be grown. Since the offline process is manual, the
administrator must ensure the changes can place on both nodes;

lvextend -L 2g /dev/vg02/apache
ssh server2 lvextend -L 2g /dev/vg02/apache

At this point the following should be run on the primary node:

/sbin/cluster/utils/drbd_tool --action=resize --application apache

how to check? /cat/drbd?

Once the resize has been successful, the devices should be stopped:

/sbin/cluster/utils/drbd_tool --action=down--application apache
ssh server2 /sbin/cluster/utils/drbd_tool --action=down \
 --application apache

Page 137

 Linuxha.net Administrator’s Reference

18.3.3 Off-line File system Reduction

Currently reduction in file system sizes can only be done as an off-line process unfortunately.
This is because of two reasons:

• None of the Open Source file systems available for Linux actually support on-line
reduction in file system size.

• The DRBD device only supports the increase in the size of a volume, not decrease.

Luckily actually reducing the size of a file system is quite uncommon!

In this example the logical volume “/dev/apachevg/lv01” is to be reduced from 256MB down to
128MB. The first step is to ensure that the application is not running:

clstat -A apache
Cluster: sl4cluster - UP

 Application Node State Runnnig Monitor Stale Fail-over?
 apache N/A DOWN N/A N/A N/A Yes

Since the application is not running - even though the cluster is up and running - the file system
is temporarily mounted and backed up:

mount /dev/apachevg/lv01 /tmpmnt
cd /tmpmnt && tar cpzf /tmp/apache_backup.tgz .

The file system is then un-mounted and the logical volume resized to 128MB:

cd / && umount /tmpmnt
lvreduce -L 128 /dev/apachevg/lv01
 WARNING: Reducing active logical volume to 128.00 MB
 THIS MAY DESTROY YOUR DATA (filesystem etc.)
Do you really want to reduce lv01? [y/n]: y
 Reducing logical volume lv01 to 128.00 MB
 Logical volume lv01 successfully resized

At this point the file system must be re-created and the contents restored:

mkfs -t xfs -f /dev/apachevg/lv01
meta-data=/dev/apachevg/lv01 isize=256 agcount=8, agsize=4096 blks
 = sectsz=512
data = bsize=4096 blocks=32768, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=1200, version=1
 = sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

The “-f” option must be placed after the “-t xfs” option in the above command. The “-f” (force)
option is used since the existing file system still exists on the logical volume.

mount /dev/apachevg/lv01 /tmpmnt
cd /tmpmnt && tar xzpf /tmp/apache_backup.tgz
cd / && umount /tmpmnt

At this point the file system on “ServerA” has been modified, but that on “ServerB” has not - so
reduce the size of the logical volume on that server:

ssh sl4s2 lvreduce -L 128 -f /dev/apachevg/lv01
 WARNING: Reducing active logical volume to 128.00 MB
 THIS MAY DESTROY YOUR DATA (filesystem etc.)
 Reducing logical volume lv01 to 128.00 MB
 Logical volume lv01 successfully resized

At this point the contents of the file systems for the application must be invalidated. Since only
“/dev/apache/lv01” has been changed, that file system can be targeted directly. Firstly the
DRBD devices for the application should be started:

Page 138

 Linuxha.net Administrator’s Reference

/sbin/cluster/utils/drbd_tool --application apache --action=start
ssh sl4s2 ssh sl4s2/sbin/cluster/utils/drbd_tool --application apache \
 --action=start --noprimary

Now force the remote copy to be invalid:

/sbin/cluster/utils/drbd_tool --application apache --action=invalidate_remote \
 --vg apachevg --lv lv01

At this point examining the local “/proc/drbd” device should show synchronisation taking place:

head /proc/drbd version: 0.7.10 (api:77/proto:74)
SVN Revision: 1743 build by root@sl4s1, 2005-06-07 05:38:31
 0: cs:SyncSource st:Primary/Secondary ld:Consistent
 ns:4412 nr:0 dw:0 dr:4412 al:0 bm:8 lo:0 pe:26 ua:0 ap:0
 [=>..................] sync'ed: 6.3% (126764/131068)K
 finish: 0:00:57 speed: 2,152 (2,152) K/sec

Keep checking this file and once the synchronisation is complete, stop the DRBD devices:

ssh sl4s2 /sbin/cluster/utils/drbd_tool --application apache --action=down
/sbin/cluster/utils/drbd_tool --application apache --action=down

Now the application must be re-built using the following commands:

clbuildapp -A apache -V -F --vgbuild

Since the application configuration has not been changed the “--build” option is not actually
necessary - though it must be performed to ensure the file system size change is noted by the
cluster software.

clbuildapp -A apache -V -F --build

At this point start the application and check file system size:

clstartapp -A apache
INFO 23/06/2005 07:02:17 Applications start completed successfully

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 2016016 1798280 115324 94% /
none 128020 0 128020 0% /dev/shm
/dev/drbd0 126272 316 125956 1% /apache

File system re-sized as appropriate.

18.4 Modification of application parameters
The administrator can modify the configuration file for the application at any point, though
currently any changed values will not be taken account of. For example, if the administrator
changed the IP addresses or network defined for the application only when the application is
restarted will the changes take affect.

However the administrator should note that as soon as the configuration files have been
updated they should run the “clbuildapp” script with “--vgbuild” and “--build” options. Failure to
do so will result in invalid checksums being kept meaning many commands will fail to run.

Page 139

 Linuxha.net Administrator’s Reference

19 Easier Application Management
The purpose of this section is to explain some additional application configuration directives that
can be used to aid cluster management, particularly if many applications are configured.

Early in the development of Linuxha.net additional optional directives were added to enable the
cluster to attempt to manage multiple applications in a logical manner. Although significant
improvements to these directives may occur in future releases they provide a frame work
covering auto-start of applications, preferred application nodes and even inter-dependencies
between running applications.

Currently the following example configuration file for an application shows the three new
optional directives in use. Each is completely independent of the other and is entirely optional.
The new directives are highlighted in italics.

 <global>
 <version>0.2</version>
 <name>mysql</name>
 <takeover>force</takeover>
 <dependencies>samba</dependencies>
 <preferred_node>LEAST_CPU_LOAD</preferred_node>
 <autostart>true</autostart>
 </global>

The table below summarises each of the new directives:

Element Purpose
Global.dependencies This should be a comma separated list of other applications that

need to be running before this application is started.
Global.preferred_node This is either a node name in the cluster, or either of the values

“LEAST_APP_LOAD” or “LEAST_CPU_LOAD”. It defines the
host where the application should be started, (if both nodes are
available).

Global.autostart This should be set to “true” or “false” (though “yes” and “no” are
also accepted). It indicates whether or not the application
should be automatically started when the cluster is formed
using the “clform” or “clstart” commands.

It is important to remember that these directives are only taken notice of by the “high level”
cluster tools – that is the “clform”, “clrunapp” and “clstart”. Using the “clstartapp” will ignore these
settings and simply start the specified application on the local node.

Page 140

 Linuxha.net Administrator’s Reference

19.1 Differences During Application Build
If these additional directives are present during the build of an application, then some additional
output is included. If the “autostart” parameter is included then a line similar to the following will
be shown when using verbose output:

INFO 27/03/2004 10:30:06 Autostart parameter present and valid.

Similarly if use of the “preferred_node” is made then a line similar to following will be shown:

INFO 27/03/2004 10:30:06 Preferred_node parameter present and valid.

Finally if a “dependencies” attribute is included for each dependent application a line similar to
the following will be shown:

INFO 27/03/2004 10:30:06 Validated dependent application samba.

Because these settings do not stop an application from being started via the “clstartapp”
command if there are any problems it will only cause warnings to be issued rather than errors.

If the administrator does define dependencies then a check is made to ensure the builds of each
of those applications is valid, and if not a warning is issued. Again this does not abort the build
process.

If a dependent application can not be validated when the package is started using “clrunapp”
then it will not be started, which might cause unexpected results.

19.2 Using the “clrunapp” Utility
Much effort previously in this document has been given over to describing the use of “clstartapp”
to start applications – though in reality it is more likely that applications will be started via the
“clrunapp” command or even automatically when the cluster forms using the “clform” or “clstart”
utilities.

If using the attributes “preferred_node” and/or the “dependencies” attributes for an application
then ideally this application should be started via “clrunapp” to ensure this additional information
is taken advantage of and the application is formed in the expected manner.

Consider the application mentioned at the start of this section:

 <global>
 <version>0.2</version>
 <name>mysql</name>
 <takeover>force</takeover>
 <dependencies>samba</dependencies>
 <preferred_node>LEAST_APP_LOAD</preferred_node>
 <autostart>true</autostart>
 </global>

This configuration indicates that the application “mysql” has a dependency on the “samba”
application. It also indicates that the node that “mysql” is run on is the node with the least
number of active packages when it is started.

If “samba” and “mysql” were the only two applications in the cluster, and the cluster consisted of
nodes “serverc” and “serverd”, then consider the consequences of running the following
command:

clrunapp –application mysql

If this command was run on “serverc” then the output it would generate would be similar to the
following:

INFO 27/03/2004 11:17:06 Validated cluster configuration.
INFO 27/03/2004 11:17:06 Successfully connected to cluster cluster2.

Page 141

 Linuxha.net Administrator’s Reference

INFO 27/03/2004 11:17:06 Verified that application mysql is registered.
INFO 27/03/2004 11:17:07 Current application state : DOWN
INFO 27/03/2004 11:17:07 Application mysql depends on: samba
INFO 27/03/2004 11:17:07 Application samba will be started on node serverc
INFO 27/03/2004 11:17:07 Starting samba using command:
INFO 27/03/2004 11:17:07 /sbin/cluster/clstartapp --application samba --maxdelay 30
--verbose
INFO 27/03/2004 11:17:20 Application samba started after 13 seconds.
INFO 27/03/2004 11:17:20 Application mysql will be started on node serverd
INFO 27/03/2004 11:17:20 Starting mysql using command:
INFO 27/03/2004 11:17:20 /sbin/cluster/clstartapp --application mysql --maxdelay 30
--verbose
INFO 27/03/2004 11:17:34 Application mysql started after 14 seconds.

Since this is a high level command it will always produce verbose output – though only to the
screen – it does not have a log file like the underlying utilities. Notice that the “samba”
application has been started on the local node, whilst the “mysql” application has been started
on “serverd” - since when it started the “LEAST_APP_LOAD” attribute meant that the “serverd”
was instead chosen.

Please note that the “clrunapp” supports a limited range of command line options to help take
account of these additional attributes, including:

Option Purpose
--nodeps When starting the application do not attempt to start any applications that

are registered as dependents of this application.
--nologging Indicates that the “--verbose” flag should not be passed to the underlying

call to “clstartapp”. Usually it is meaning that the application start-up and
“Lems” daemon log messages – which is most cases is the required
action.

--localonly Currently this is not used by the underlying “clstartapp” utility but in future
releases, (probably 0.7.0 onwards) it will indicate that the application
should not attempt to contact the other node allowing for faster application
start-ups.

--node Y Indicates that the application should be started on node “Y” - assuming
that the node is available. This overrides the “preferred_node” setting if
the specified application has one.

--preview Do not actually start any applications – simply give a summary of what
steps would be taken, (particularly useful when an cluster has lots of
applications and dependencies).

--timeout The maximum amount of time to wait for an application to start –
overriding the value given in each application configuration file, (if
present). This defaults to 30 seconds if not included on the command line
or in the application configuration.

--reset Reset the list of valid nodes for the named application, (allowing it to start
on either of the two cluster nodes).

--nolocking Indicate that the application should not attempt to communicate with the
lock daemon when assigning shared resources.

--nochecksums Ignore application and cluster configuration file checksum errors - only
use in emergencies!

--force Force the application to start by passing the “--force” option to the
“clstartapp” command. It will ensure that the application starts in more
circumstances than normal.

--reallyforce Really force the application to start – even if the node it is running on does
not have a valid copy of data (dangerous). [Currently not supported - may
be removed for 1.0.0]

19.3 Using the “clform” Utility
As shown earlier in the document, (see page 74), the “clform” utility can be used instead of
calling “cldaemon” on each node to form the cluster. The full list of supported options are shown
below. Previously just the cluster start-up was shown. However, if the “autostart” attribute is
present for any application then this utility will also automatically start the applications by calling

Page 142

 Linuxha.net Administrator’s Reference

the “clrunapp” utility. Hence formation of the same cluster above would have resulted in output
similar to the following:

clform
output from live environment

In the above example simply running a single command resulted in the cluster forming and two
applications starting – all within 45 seconds.

Version 1.0.0 of Linuxha.net provides the following command line options for “clform”:

Option Purpose
--noapps When forming the cluster do not attempt to start any applications that

have been registered to autostart.
--force Force the formation of the cluster. This will mean that the cluster will form

even if a node is not available, and even if the nodes have a time
difference larger than 10 minutes.

In this instance the “--force” option is also progated to any applications
that are started via the “autostart” attribute.

--config X Specify the name of an alternative configuration file – typically not used,
though useful for debuggging and testing.

--join Rather than both nodes attempting to join the cluster a node currently not
in the cluster should attempt to re-join it (see the example below).

--timeout Override the configured cluster form time out and use this number of
seconds instead.

--nolocking Indicate that the cluster daemons and applications should not attempt to
make use of cluster lock daemon.

--nochecksums Ignore errors in cluster and application checksums - use only as a last
resort.

As with “clrunapp”, the use of “--nochecksums” is strongly discouraged. Use of this feature
should only be performed as a last resort since without the checksum the results of any of the
Linuxha.net can not be guaranteed.

if the administrator attempts to form a cluster which is already running the utility will simply exit,
thus having no impact on the state of the cluster or any currently running applications. In such
cases the output from the command will be along the following lines:

INFO 30/03/2004 19:00:16 Validated checksum for cluster configuration
INFO 30/03/2004 19:00:16 Checking that the cluster is not already running...
ERROR 30/03/2004 19:00:16 Cluster cluster2 is already running.

19.3.1 Joining an Existing Cluster

One of the most useful options available for the “clform” command is the “--join” option. This
allows a node to rejoin the cluster very easily. For example, if the “cldaemon” dies on a node,
the following scenario is possible, as reported by “clstat”:

clstat output where node daemon has died

Notice that although the node “serverd” is marked as “UP” the “No daemon” message indicates
that cluster services are not present on that node - even though it appears the “mysql”
application is running there. This scenario is possible if the cluster daemon has aborted (due to
error) or has been killed off.

The above scenario was considered as part of the cluster software design and so an
application can actually run without issues if such a situation does occur. Of course it does
mean that failover many fail-over conditions will not be dealt with automatically on this node until
a daemon is restarted.

Page 143

 Linuxha.net Administrator’s Reference

As mentioned previously (see page 71), it is possible to manually start the “cldaemon” process
on each node to join the cluster, the command being similar to the following:

cldaemon --join --verbose --detach

Of course this command must be run on the server which is currently not in the cluster. In most
cases the “clform” command is preferred. Since it is classed as a “high-level” command it can
be used as an alternative when a node is to re-join a cluster.

Using “clform” the command to use is simply:

clform --join

When run on either node it will work out which node is in the cluster and which is not and run
the appropriate command on the appropriate node and report back once the node has joined
the cluster, or failed to join it:

show node joining the cluster

If “clform” is used when both nodes are down, or when both nodes are up a suitable error
message will be shown, for example:

INFO 30/03/2004 19:00:19 Validated checksum for cluster configuration
INFO 30/03/2004 19:00:19 Checking cluster status...
INFO 30/03/2004 19:00:19 Both nodes are currently up - no action taken.

Page 144

 Linuxha.net Administrator’s Reference

20 Performing Software Upgrades

20.1 Background Information
The aim of this section is to describe the recommended process that should be used to perform
several common software upgrades that are likely to be necessary during the life time of the
cluster.

As with the rest of this documentation the approaches taken aim to minimize or remove any
downtime requirements for the clustered applications. The aim in all cases is to ensure client
access remains completely unaffected unless absolutely possible. The situatinos covered here
are;

➢ Upgrading a clustered Application
Although this doesn’t really impinge on Linuxha.net administration, obviously there is an
overlap - especially if multiple applications are currently part of the cluster configuration.

➢ Upgrading Linuxha.net Software
Although the software is now past at version 1.0.0 updates are expected to happen on a
regular basis. The steps described here ensure unless otherwise stated for a particular
release it should be possible to perform such updates with no loss of client access.

➢ Updating Operating System Software
Depending on the software components that are being upgraded it may or may not be
possible to perform such updates online. This takes advantage of Linux’s ability to replace
binaries that are currently in use for many upgrades.

20.2 Upgrading Clustered Applications
Earlier in this document, and as covered in more depth in the Application Installation and
Configuration Guides, it is possible to install Linuxha.net applications in the manner most
appropriate for the application in question, and the administrators requirements. However
typically applications will either be installed locally to each node, or installed as part of the
replicated storage.

➢ Upgrading Applications Installed on Local Storage
If an application is installed local to each host it reduces the impact of performing
upgrades - assuming that the data remains compatible between application versions.

In such cases the node where the node is not currently running on can be upgraded,
whilst the application is running on the other node. Prior to the upgrade the administrator
is recommended to make use of the “cldaemonctl” command to ensure that the
application will not fail-over to this node, for example:

cldaemonctl --msg “SETVALIDNODES APP=apache \
NODES=servera FORWARD=yes”

The above indicates that if the application is running on “servera” a software failure will
shut it down rather than attempting to start it the other cluster node (i.e. the one where the
software upgrade is currently being performed on).

If this is the only application in the cluster, then the alternative is to remove the node being
upgraded from the cluster:

clhalt --node serverb

This ensures software and hardware failures do not fail over to “serverb” in case this
disturbs the software upgrade that is taking place here.

Page 145

 Linuxha.net Administrator’s Reference

Following a successful software upgrade on “serverb”, the node should be added back
into the cluster, or the list of valid nodes for the application reset, depending on the
method used, for example:

cldaemonctl --msg “SETVALIDNODES APP=apache FORWARD=yes”

or:

clform --join

Once the software upgrade has been completed on that server at some point the
administrator should fail-over the application to the other node, and upgrade it in the same
manner described above. An alternative approach (assuming the new software uses the
same data format) is to wait until it actually fails to the other node and then update the
software on the original one.

➢ Upgrading Applications Installed on Replicated Storage
Online update of software this is stored on the shared storage is probably not possible in
most cases. In all cases the first step the administrator should perform is to ensure that
any process monitor functionality is disabled. Usually pausing the Lems monitoring
completely for the application is the easiest way to achieve this:

lemsclt --application apache --msg PAUSE
OK

At this point the administrator is free to stop the application and perform the upgrade -
obviously on the node where the replicated file systems are currently mounted. This
approach has the advantage that the installation should only need to be done once, rather
than once for each node. However the administrator should take care; many applications
hard code some configuration files. For example Oracle may install into any location, but
may expect an “/etc/oratab” file to exist.

Thus the administrator may need to check for files being installed or altered on local
storage and manually copy such files to the remaining node in the cluster.

Following the update the application can be restarted and the Lems monitoring resumed:

lemsctl --application apache --msg RESUME
OK

20.3 Upgrading Linuxha.net Software
In most cases it is actually possible to upgrade the Linuxha.net software without actually
stopping the cluster! However as always the best approach the administrator can take is to
always stop the cluster. The steps necessary for each approach are listed below.

➢ Complete Off-line Software Upgrade
Assuming that downtime has been agreed for all currently running applications the
administrator must stop all clustered applications and cluster daemons. This is done using
the command:

clhalt --force

Once the cluster software has been stopped the administrator is now free to install the
new software versions on each node.

Please take care to read the release notes prior to performing software upgrades since
certain upgrades may require manual steps before the new software version is started.

If (and only if) the checksum algorithm has changed (it does so purposefully occasional),
then the cluster and application configuration files will need to be rebuilt; for example;

Page 146

 Linuxha.net Administrator’s Reference

clbuild -V -F
clbuildapp -A apache --vgbuild && clbuildapp - A apache --build

At this point the cluster can again be formed:

clform

Of course following any upgrade the administrator is recommended to be careful attention
to the following log files after cluster formation, and start-up of any applications;

/var/log/cluster/clnetd.log
/var/log/cluster/cldaemon.log

➢ Partial Off-line Software Upgrade
This approach is supported unless otherwise stated in the release notes for a
particular version.

This approach attempts to upgrade the cluster software without taking the whole cluster
down. Hence it is necessary to ensure that at some point all the applications are running
on a single node.

For example assuming all applications are running on “serverb”, then take “servera” out of
the cluster ready to perform the upgrade;

clhalt --node servera

At this point the Linuxha.net software can be upgraded on “servera”. Afterwards this
upgraded node can rejoin the cluster;

clform --join

Now the applications that are currently on “serverb” should be migrated across to servera:

clhalt --node serverb --action=failover

Now the software upgrade can be performed on “serverb”, and once complete this node
can rejoin the cluster:

clform --join

➢ On-line Software Upgrade
It is possible to upgrade the cluster without failing over any applications - as long
as the release notes indicate the checksum calculation has not been changed.

This is the best approach for environments that need 24x7 live applications, since the
applications can run on both nodes before, during and after the upgrade without
interruption.

To do this choose either node and run the following command (where “clustername” is the
name assigned to the current cluster):

ps -ef | grep -- -clustername
root 482 1 0 Jun23 ? 00:00:00 cllockd-sl4cluster
root 486 1 0 Jun23 ? 00:03:27 clnetd-sl4cluster
root 497 1 0 Jun23 ? 00:02:04 cldaemon-sl4cluster

This will show the process ID’s for the lock daemon, network daemon and main cluster
daemon. Use the “kill” command to kill off the cluster daemon, network daemon and lock
daemon - in that order. For example:

kill 497
kill 486
kill 497

Page 147

 Linuxha.net Administrator’s Reference

Check the cluster using the “clstat” command at this point:

clstat
Cluster: sl4cluster - UP

 Node Status
 sl4s1 DIED
 sl4s2 UP

 Application Node State Started Monitor Stale Fail-over?
 apache sl4s1 STARTED 1:01:52 Running 0 No
 samba N/A DOWN N/A N/A N/A No

So the application is still running on “sl4s1”, but the cluster daemons are not. At this point
the software on server “sl4s1” can be upgraded, for example:

cat /etc/cluster/VERSION
0.9.2

Now install the software:

tpinstall -i -p linuxha

Now check the version again:

cat /etc/cluster/VERSION
0.9.3

At this point the software should be restarted on “sl4s1”:

clform --join
clstat
Cluster: sl4cluster - UP

 Node Status
 sl4s1 UP
 sl4s2 UP

 Application Node State Started Monitor Stale Fail-over?
 apache sl4s1 STARTED 0:00:00 Running 0 Yes
 samba N/A DOWN N/A N/A N/A Yes

The same process can now be repeated on the second node. Following this the On-line
upgrade will be complete.

20.4 Updating Operating System Software
The scope of the upgrade is reflected in the amount of interruption they may be necessary.

Ø Non-kernel Upgrades
For example updating of libraries or programs that are not dependencies of the
Linuxha.net software have no impact.

However if updates are occuring to the following software care should be taken;

Ø Perl (or any standard Perl Modules)
Ø Core libraries (such as libc.so or libm.so)

In such cases the release notes for the updates should be checked for possible
incompatibilities. If the changes are minor then performing the upgrade is very unlikely
(though can not be 100% guaranteed) to cause no problems. Of course if in doubt any
such upgrades should occur out of core operating hours.

Ø Off-line Kernel Upgrades
Such changes obviously require a machine reboot to take affect. Hence the safest way is

Page 148

 Linuxha.net Administrator’s Reference

to;

Install software upgrades on both machines - steps necessary depend on distribution.
Shutdown the cluster - for example using “clhalt --force”.
Reboot both servers - for example using “reboot”.

Following the reboot the administrator is recommended to run the following commands on
both nodes to ensure the “DRBD” kernel module is made available for this kernel version:

cd /usr/src/cluster/drbd.7-10
make clean
make
make install

At this point the administrator can start the cluster and any applications are necessary;

clform
clrunapp -A apache

Hence such upgrades should be done one server at a time. Prior to the upgrade of
“servera” fail-over all applications

Page 149

 Linuxha.net Administrator’s Reference

21 Handling Failure Scenarios

21.1 Introduction
The purpose of this section is to describe what happens when availability problems occur. The
information contained here may help the administrator to decide which recovery actinos are
must appropriate to ensure application availability is returned as soon as possible to the user.

This section is highly dependent on the version of Linuxha.net that is in use. The section
currently refers to version 0.9.0 and above. It is recommended that all sites run at least this
version to ensure the information detailed here is accurate to their environments.

As well as describing typical scenarios the administrator may see, information on how the
cluster handles such conditions is obviously included. Of course the aim here is that most
conditions are found immediately and handled automatically by Linuxha.net. In many cases
however there will be a short period of “downtime” - though how this affects the users depends
not only on the problem that has occurred, but also on the application in use and obviously the
speed of recovery, especially if recovery is not automatic.

It should be reiterated that as with most clustering software products, the design aim is to
automatically handle and recover from failure of a single “component”. Failure of multiple
“components” should be noted, but in many cases may not be handled automatically.

21.2 Common Failure Scenarios
Although Linuxha.net only supports two node clusters presently (and thus may be considered
“basic” by some groups), it does attempt to handle almost all single component failure scenarios
automatically.

It is the responsibility of the administrator to check the cluster logs on a regular basis to capture
information on potential problems (or problems that have occured, but have been recovered
from).

Version 1.0.0 does not provide hooks to alerting software. This functionality will be added in
later releases.

The flexibility that keeping data replicated rather than shared does unfortunately mean that they
may be more recovery scenarios to consider compared to classic clusters which the highly
available data is instead shared.

From experience the following sections describe the most likely problems the administrator will
encounter whilst running any cluster (though problems will of course discuss such failures in
relation to Linuxha.net in particular).

Page 150

 Linuxha.net Administrator’s Reference

21.2.1 Loss of a Network Link

The impact of this is really dependent on the resilience of the cluster network topology. If the
cluster has spare cards in the network in question then it will automatically fail-over to an
alternative card. In many cases this is completely transparent and clients will be unaware of this
network change.

The actual steps, implementation details and short-comings of this type of failure and recovery
are now considered in detail.

Detection of Link Failure
Under most conditions Linuxha.net makes use of the cluster network daemon to monitor all
physical interfaces that are in use (i.e. have an IP address assigned currently), and take
appropriate actions if a link failure is detected.

The method of detection depends on what each card physically supports - it will use calls
support by “ethtool” or MII status checking. Any combination of cards supporting either method
is fully supported.

However link failure checking is not possible for all card types - though this is currently
thought to be confined to wireless Ethernet.

Actions on Link Failure
When a failure is detected then any IP addresses that are associated with the card in question
will be migrated to the alternative interface - if available. The original interface is then marked as
“faulty” for a short period of time.

If a further link failure occurs and the other alternative cards have been used, then the IP fail-
over will only occur if the time period for any interface to be marked as “faulty” is passed. In that
case it will reuse the interface, otherwise no interfaces for that network are deemed suitable.

When the cluster network daemon is unable to find an alternative interface for a failed network
link then it informs the cluster daemon that this particular network has failed locally.

In such situations the cluster daemon will scan the list of currently hosted applications any any
that make use of this network are automatically failed-over to the other node in the cluster -
assuming it is operational. If a cluster is configured with several networks any application
running not making use of the failed network is left alone.

Implementation Specifics
The cluster network daemon is only responsible for monitoring physical link problems - thus it
will probably detect (and attempt recovery from) the following type of failures;

Ø Network Card failure
Ø Network Cable failure
Ø Network Port

Page 151

Production Network

ServerC ServerD

Data synchronization

 Linuxha.net Administrator’s Reference

It will not notice problems that occur at the IP or TCP/IP levels, such as;

Ø Host routing table issues
Ø Router failure
Ø Network reachability

If a fail-over is detected the recovery time is typically less than 250ms. All IP addresses
associated with the failed card are migrated (physical and alias’ed addresses). For all IP
addresses a gratuitous ARP packet is sent out to ensure associated network infrastructure can
update their ARP tables with the network MAC address associated with the affected IP
addresses.

Administrator Recovery Actions
Following a failure the administrator should obviously attempt to fix the problem. If this is a
hardware issue on a node then the following actions would need to be followed;

Ø Migrate remaining applications off of the affected node
Ø Halt cluster services on affected node
Ø Halt node (if necessary) and perform necessary maintenance.
Ø Start the server (if necessary)
Ø Allow the node to re-join the cluster

The Halt and Re-start of the server hardware are only necessary if the server does not
support hot-plug functionality for the component being replaced.

The commands necessary to do the above (assuming “servera” is to be brought down, and the
commands are being run on “servera”):

clhalt --node servera --action=failover
halt

Perform necessary changes and Boot server;

clform --join

If a server reboot is not necessary (for example just a cable needed to be replaced), then the
administrator must ensure the network daemon re-scans all networks to ensure monitoring of
the particular network in question is re-started. This can be done using the following command:

clnetd --msg “REREAD”

After this monitoring of the failure network will again take place. Following this command check
the network daemon’s log file for any remaining problems.

The above command must be run on the node where the network problem occured, since
“clentdctl” only communicates with the local cluster network daemon.

Page 152

 Linuxha.net Administrator’s Reference

21.2.2 Handling IP-level failures

Since the network daemon only has scope for handling physical connectivity issues, the
administrator can optionally ensure that a Lems module is used to scan connectivity on a per-
application basis. The module type to handle this is “ip_module” - and a lems entry for any
application will appear the same (apart from the application name which is shown in bold):

 <check>
 <name>ip</name>
 <type>internal</type>
 <module>ip_module apache</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="RUN move_ip"/>
 <action rc="2" action="STOP"/>
 </action_list>
 </check>

Notice that the IP checking performed here is determined by the contents of the application
configuration for the application in question. For example if the “apache” application had the
following information in it’s “appconf.xml” file:

 <networks>
 <network net="main"
 ip="172.16.177.200" netmask="255.255.255.0"
 checklist="172.16.177.1" checkpercent="100"/>
 </networks>

In this case the “checklist” and “checkpercent” environment is used every 10 seconds. If
problems do exist then the module will communicate with the cluster network daemon indicating
a network problem.

Currently the software typically only tries to test IP handling every 10 seconds, though this can
be reduced down to 1 second if necessary.

The administrator should be aware that this module has the ability to affect every application
- since the IP fail-over will migrate all IP addresses associated with a network card, not just
those for a particular application.

21.2.3 Failure of Data Replication Network Connection

The network that is used for DRBD data replication is handled in the same way as any other
network configured in the cluster - that is IP fail-over to an alternative card, if available, will be
performed.

If a dedicated network is not assigned for such communication then client/server communication
as well as the server-server DRBD traffic will be mixed on the same card. This will work without
problems but is not ideal, especially in production systems.

The more usual scenario is to have a dedicated network for such traffic. If stand-by cards are
not available, or even IP fail-over events have occurred for monitoring to cease on this network,
then obviously Linuxha.net functionality will be affected.

In the case of connectivity loss for this network then if the data is currently synchronised then
the applications will continue to function, though the remote data copy will become “Stale”. In
such cases following problem resolution the stale data will automatically be updated after a
short period with no administrator intervention being necessary.

However if a previous error condition has resulted in the local data copy being stale then such a
loss will lead to I/O errors being returned to the application. If this causes the application to fail
then the process monitor may fail the application to the other node, though otherwise the
administrator must take steps to intervene.

Page 153

 Linuxha.net Administrator’s Reference

21.2.4 Application Software Failure

For a cluster to function effectively the administrator must ensure that the application software is
monitored as well. The most common way of doing this is to simply ensure that certain
processes are running, and if not take some remedial action – such as attempting to restart the
application, or even failing over the application to the other node in the cluster.

Since process checking is very common there is already a module available for the Lems sub-
system that can be used to monitor processes – known as the “procmon” monitor (examples of
which have been shown previously). Detailed information on the configuration and use of the
“procmon” module can be found starting on page 184.

Of course simply monitoring for certain processes is not the only way to validate the health of
the application. Other alternatives (or additions) include:

• Test transactions – running a fake request against the application service to see if it
responds as expected.

• Log checking – checking the tail of a application log file looking for serious errors that may
indicate an application problem.

The Lems sub-system can be easily extended to include such tests – see the technical details
on the sample transaction-based monitor for Lems starting on page 188 if the administrator
wishes to investigate such possibilities.

However the rest of this section will concentrate on how the “procmon” monitor is used and how
it impacts application availability. First consider the following extract from the status of a sample
“samba” application:

clstat --application samba
...
 Process Monitors

 Name Status Restarts Current Reset at
 smbd Running 3 0 N/A
...

A process monitor works on the principal that it is better to attempt to restart an application on
the local machine if it fails rather than initially attempting a fail-over – the reason being that a
fail-over of the application to the other node increases the period of the application being
unavailable.

In the above example the application is able to be restarted up to 3 times currently. If the “smbd”
process is killed, (the one which is being monitored in this example) then shortly afterwards it
will be restarted and running “clstat” again will show something similar to the following:

 Process Monitors

 Name Status Restarts Current Reset at
 smbd Running 3 1 23/02/2004-16:55

This indicates that the application has been restarted once out of a maximum number of three
times. The “reset at” column indicates when the count of restarts is set back to 0 – it is defined
as an interval after the last restart – and is typically set for a couple of hours.

In the above example the Lems log file will include an indication of the restart has occurred:

INFO 23/02/2004 15:55:45 Restarting the application (/samba/cfg/scripts/restart) ...
Error: Unable to find process to kill

In the above example the “restart” attempts to kill a running process first – which of course was
not in place – hence the error message.

Page 154

 Linuxha.net Administrator’s Reference

21.2.5 Stopping Fail-over (from application monitoring)

When initially building a cluster, or are changing it at a later date, it often makes sense to
disable this application level monitoring that Lems offers. There are three ways in which this can
be done:

• Change the Lems configuration file for the application to ensure the application monitor is not
included - and then kill off the Lems daemon for the application in question.

• Create an ignore flag on both nodes in the cluster.
• Send a message to the “Lems” daemon to stop scheduling the specified component.

The first approach will work because the main cluster daemon will restart the Lems daemon for
any running application when it notices that it has died.

The second one requires that the “flag check” module is configured and in use - and if such is
the case does allocate non-root users to control application checking. This can be
advantageous in some circumstances.

Typically the flag check monitor uses the following directory for storing flags:

/etc/cluster/<applications>/flags

Thus to stop the “smbd” monitor the following command would be used:

touch /etc/cluster/samba/flags/smbd

The name of the file is the name of the monitor you wish to stop – if the flag directory does not
exist, simply create it. Once the flag has been created, the “clstat” command will show
something similar to the following:

 Process Monitors

 Name Status Restarts Current Reset at
 smbd Stopped 3 1 23/02/2004-16:55

At this point the monitor has been disabled. It can be left disabled as long as necessary, though
of course this is only recommended for “maintenance” periods on production-like environments.

When the administrators wishes to resume the monitoring simply remove the flag file:

rm /etc/cluster/samba/flags/smbd

The alternative approach is to send a message to Lems. This can only be done as “root”, and in
this case the administrator would use:

lemsctl --application samba --msg “PAUSE smbd”
<check above command>

Later resuming the specific monitor requries the command:

lemsctl --application samba --msg “RESUME smbd”
<check above command>

If an application monitor notices that the application it monitors has failed more than the
maximum number of times, then the typical response is to fail-over the application to the other
node – though this really depends on the Lems configuration for the monitor being something
like:

 <check>
 <name>smbd</name>
 <type>internal</type>
 <module>procmon /etc/cluster/samba/smbd.xml</module>
 <interval>10</interval>

Page 155

 Linuxha.net Administrator’s Reference

 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="STOP"/>
 <action rc="2" action="FAILOVER"/>
 </action_list>

If the action for return code “2” is not “FAILOVER” then the application will obviously not fail-
over.

21.2.6 Process Monitor Administration

Current versions of the Lems monitoring daemon allow fine-grain control of the environment
whilst the monitor for an application is actually running. For example it is possible to change the
maximum number of restarts and the current number of restarts by making use of the “lemsctl”
utility.

For example if the process monitor above is configured to use a maximum of 3 restarts then the
following command could be run to increase this to 5 - for this invocation only:

lemsctl --application samba --msg “CMD smbd MAXCOUNT 5”
OK

Although the count of current re-starts is reset after a period of time, using “lemsctl” it is possible
to reset this count immediately:

lemsctl --application samba --msg “RESET”
OK

For more information on controlling process monitors see the text starting on page 174.

One major limitation of earlier versions of “Lems” that has been addressed is that of application
status management in the cluster configuration. If an application fails on a particular node and a
fail-over is initiated by the node itself then a software flag is set on that node indicating that a
fail-back to this node is not applicable for the application.

The purpose of this is to ensure that if a problem with a process monitor occurs and it fails over
the application incorrectly, after failing between the two nodes it will halt the application. If this
functionality was not available then the application would continue to fail-back between the
nodes indefinitely which could not be considered as manageable.

This scenario typically only occurs happens when there is a software fault – either with the
application itself or the configuration of one or more monitor processes for the application.
However it is possible to also happen when there are consistent networking issues within the
infrastructure that makes it impossible for a running application to find a suitable reliable
interface on either node.

21.2.7 Node failure (Hardware or Operating System)

This is the scenario where one of the nodes in the cluster appears to “die” - that is it either shuts
down at an unscheduled time due to unforeseen problems, or simply “dies” - i.e. suffers from a
loss of power. The cause of the problem could also be software – for example a kernel panic
still causes the server to be unavailable in the same manner as a processor or power supply
failing10.

Such cases are now becoming more rare as Operating Systems become more stable, but still
hardware problems can occur at any time, and of course this is the typical “disaster recovery”
scenario when one of the server locations is lost due to fire, for example.

The next section covers handling of “Node Failure Scenarios” in more detail, but it is important
to realise this is one of the most important abilities that all clustering software must deal with –
including Linuxha.net.

10Though of course the recovery actions required are far different. Typically software failures may result in only short
periods of downtime meaning that recovery of the cluster availability is usually sooner.

Page 156

 Linuxha.net Administrator’s Reference

21.3 Managing Node Failure Scenarios
Here it is assumed that the cluster is running with two nodes – if the cluster is running with a
single node and that node fails then obviously all application available will be lost until the
adminstrator manually start either or both nodes in the cluster.

If the node that fails is not running any applications currently then no loss of application
services will occur. In this case the loss of the node will mean that the remote copies of data
will be marked as “Stale” meaning that a synchronisation of the data will need to occur once the
failed node rejoins the cluster.

If the node is actually running some applications then these applications will suffer a period of
outage whilst the other node in the cluster notices the node has failed and then considers the
viability of starting each application on the remaining node.
The time taken for an application to be restated depends on the time-outs set for cluster
communication and how many applications need to be started on the remaining node. Currently
each application is started in sequence since this is deemed the most sensible approach when
recovering multiple applications.

The application will only be started on the remaining node if it is deemed viable for that
application. If the copy of the data on the remaining server is state then the application will only
start if running with a “forced” start-up.

If a forced start of an application does occur, using potentially “stale” data, then when the other
server attempts to rejoin the cluster its copy of the data will be over-written – even though it
was (previously) thought to be the (only) valid copy of data!

Hence the importance of ensuring the administrator chooses the most suitable value for the
“takeover” attribute for each package.

One further point the administrato should consider is that during the actual take-over the “clstat”
command may indicate the application as “DOWN” for a short time period prior to the take-over
completing.

21.3.1 Checking Application Status

Once the applications have been started on the remaining node in the cluster, (assuming each
is viable), using “clstat” on the application would show a status similar to the following:

clstat output after hardware failure and application running

If at this point the cluster daemon logs on “serverB” (“serverA” being down) were checked, the
administrator should see something similar to the following indicating that the service has failed
over to “serverB”:

cldaemon log output for application fail-over

Page 157

 Linuxha.net Administrator’s Reference

Notice that the “samba” application has 3 invalid logical volumes – viewing the detailed
information for that application shows what the administrator should expect:

clstat output for application with stale data

21.3.2 Recovering Application Data Availability

When the above scenario occurs obviously high availability of the “samba” applicatino can not
occur until the remaining node is brought back to into synchronisation – there is currently just a
single copy of data, on a single node – so it is imperative to get the other node back into the
cluster as soon as possible.

Once the other node has had any hardware and/or software problems resolved the
administrator should boot it as normal. Because the cluster is already running it will not rejoin
the cluster until you manually ask it to do so11. Assuming this node is called “serverA” in this
example, then the following command could be used to join the cluster:

clform --join

This would have shown something like the following:

clform --join output

Once both nodes are back in the cluster, the output will appear similar as follows:

clstat output

11 This is of course assuming that the “clstart” utility has not been configured to automatically start/join clusters on
machine boot.

Page 158

 Linuxha.net Administrator’s Reference

At this point if you check the “lems” file you will see the following entries for around the time the
backup node failed:

fsmonitor output up to daemon contacted

Shortly after the node rejoins the cluster the data synchronisation should start. Again the Lems
log for the application will contain some information to indicate the actions taken:

lems output showing synchronisation attempted

Following this output “clstat” can be used to view sychronisation progress.

clstat --application samba
verbose output showing sync in progress

It should be remembered that DRBD only synchronises regions of each file system that have
changed and so quite often this completes before the administrator can even check!

If sychronisation does take some time to complete the Lems log may contain entries similar to
the following:

log entries showing sync progress?

DRBD will synchronise all devices concurrently - thus the amount of bandwidth consumed on
the network is not only determined by the sycnhronisation rate configured for the application, but
also the number of file systems the application has (and how many contain stale data).

Page 159

 Linuxha.net Administrator’s Reference

Once all data volumes for this application have been synchronised the important lines present in
the “lems” log file are the following:

messages from lems log showing sync complete...

At this point the data is fully available again on both nodes.

It was noted above that the bandwidth to consume is a product of the number of file systems an
application has. The actual time taken to synchronise all file systems thus depends on a number
of factors, including;

1. The amount of stale data to synchronise – the longer an application runs on a single node,
the larger the amount of information that is likely to be out-of-date on the failed node.

2. The number of file systems to synchronise – each file system is synchronised separately
(though concurrently).

3. The performance of the host systems – the raw power of both systems is important during
the operation of the cluster since both nodes are involved in handling both the data being
synchronised and any existing file systems that are fully synchronised. This particular
pertains to disk I/O - especially if multiple file systems are being synchronised.

4. The bandwidth of the network connection – obviously a 1Gbit/second connection offers a
better through put compared to a 100Mbit/second connection.

5. The current load on both servers – the synchronisation effort attempts to ensure that other
I/O traffic on both servers is not unduly impacted – hence if the servers are busy doing “real”
work the synchronisation rate is likely to be lower than the possible maximum.

All of these factors combine to produce a rate of synchronisation that does not remain static –
hence the estimated completion times is purely that – an estimate – though it typically becomes
more accurate once it has been running for at least 1 minute, (assuming other steady-state
conditions).

21.4 Loss of Server Main IP Interface
Earlier versions of Linuxha.net relied on the “main IP” interface to perform many actions. For
example, the high level cluster form routines and application build utilities used it solely, and if
not available simply would not function.

Version 1.0.0 does not suffer from this limitation. Since it is strongly recommended to use at
least two networks, (one for DRBD traffic and the other for client access), loss of the main IP
connection does not cause major problems - though it may cause applications to fail-over, as
described on page 150 earlier.

When multiple networks do exist the application components that usually make use of the “main
IP” addresses (that associated with the hostname), these will simply attempt to use an alternate
network address and continue to process as normal.

This alternate network probing relies on SSH-type functionality. Hence the administrator
must ensure that all IP addresses are “known hosts” to SSH otherwise it may attempt to prompt
- which may cause the program to appear to “lock”.

Of course if all network links are lost between the two nodes then “network partitioning” occurs,
which means that drastic action has to be taken - see the details on page 161.

The functionality of various commands when the main network address that is most often used
is not available is shown below for completeness.

Ø Cluster daemon – if the cluster is already running then it may take a few moments for the
cluster daemons to re-establish communication using another IP address. If the cluster is
being formed the software automatically chooses an alternative IP address that is available
and the cluster formation works as expected.

Ø Application Start-up – If the application is not running, then if you attempt to start it when

Page 160

 Linuxha.net Administrator’s Reference

the main IP address for the remote node is not available, you are likely to see something
like the following in the start-up:

Message showing alternative connection to other node during clstartapp

Notice that the final line indicates that another interface has been successfully found with a
suitable level of communication for the start-up of the application to continue.

Of course if no interfaces exist that are suitable for hosting the application IP addresses on
this host it will fail to start correctly.

Ø File System Synchronisation – If the primary address is also used for “DRBD”
communication, then if the application is already running then the remote copies of the data
will become stale. If the application is just starting the “Lems” log file will also contain
entries similar to the following indicating the data is no longer synchronised:

lems messages if DRBD interface not available

Of course once communication to the main IP address is restored then any stale data will
be quickly synchronised by a running “fsmonitor” monitor for the application in question:

messages showing synchronisation starting/completing

Of course all of the above scenarios are only possible if multiple IP networks are configured as
part of the cluster topology. If that is not the case then the loss of the interface might result in
“network-partitioning” - complete lack of communication being possible between both nodes.

21.5 Loss of Cluster Daemon
In rare cases it is possible that the Cluster daemon on a node may die, whilst applications may
or may not be running on the affected node. It is important to realise that one of the design
features of the software was to be able to gracefully handle this scenario with as little immediate
impact to running application as possible. Indeed this feature is made use of when considering
Linuxha.net software upgrades as described on page 145.

Typically if a software problem causes a cluster daemon to fail it will only affect a single node.
On the node that is remaining the cluster log will show something like the following:

message when remote server has died

Hence the daemon understands that the daemon has died since the remote host is still
contactable. In this case any applications running on either node are left undisturbed since the
most likely cause of the problem is software on the node that it appears to have failed on.

The most extreme case would be when both cluster daemons are down, and indeed running
“clstat” gives the following:

clstat
Cluster: simon1 – DOWN

However, in this instance running “df” will show the clustered file systems as still being
available:

df -h output

Also the other cluster daemons may continue to run:

ps -ef | egrep “clnetd|cllockd” output

In such cases when of the standard commands unfortunately will not function - for example
consider “lemsctl”:

Page 161

 Linuxha.net Administrator’s Reference

lemsctl --application apache --msg "fred"
output when both cluster daemons have died

To recover from this scenario simply “form” the cluster again:

clform --force
text showing cluster forming
clstat
clstat output

Notice that the cluster daemon has determined that an application appears to be already
running, and has updated the application status information it keeps to reflect this. The cluster
daemon log file should reflect this as well:

message showing found application for clsuter log

Even if the cluster did not recognise the application was running, it would notice the IP
address was in use and thus not actually attempt to start the application itself, even if explicitly
configured to via an auto-start option.

For each application that is considered to be running the cluster daemon will probe for a
corresponding runnings Lems daemon, and if not found will automatically re-start it.

21.6 Understanding Network Partitioning
Network partitioning is fortunately a rare condition - especially when mutlitple networks are
defined in the cluster topolgy. For such a condition to occur all networks defined in that topology
must cease to function.

In this situation each node in the cluster must attempt to understand whether;

Ø Whether the remote daemon died?
Could the failure to communicate with the remote server simply be down to the fact that the
server has died? The cluster daemon will attempt to communicate with the other daemon
using each network in turn until all fail or communication via an alternative route is found.

Ø Are any application IP addresses available?
For each defined application in the cluster that is considered to be running, if running on the
other node then check to see if any IP addresses can be ICMP pinged for that application.
If so the remote daemon has died, but the node is unaffected.

Ø Does a running application define an IP checklist?
If so then use it to ascertain whether network connectivity is available. If so then assume
the remote node has crashed and attempt to swap applications.

Ø Applications are no help - what next?
If any applications are running on the remote node we must assume the node is down,
otherwise assume partitioned.

When the remote node is down then the local node will start any applications that were thought
to be running on that node. When the environment is set as “partitioned” then no application
state changes occur!

Since the IP check-list details for each running application are used, it is strongly
recommended that sensible entries be defined for each application, (using known good IP
addresses, such as routers, switches and other hosts).

The worst case scenario is when applications are running but none have usable check lists, or
the check lists are invalid. In this case the daemons may assume they each node are down,
rather than the network being partitioned. This means that each node will attempt to start the
other nodes applications!!

Page 162

 Linuxha.net Administrator’s Reference

This action is not the correct thing to do but since the daemon does not have enough
information to ascertain any other status it must assume the node is down to attempt to make
applications that were started to continue to run.

Once the networking condition that causes the partitioning is resolved the daemons will re-
establish communication automatically. They will notice that both nodes are running the same
applications and one of the nodes will immediately reset itself. This occurs without disk
synchronisation and is intentionally abrupt in an attempt to remove the “split-brain” scenario -
both nodes attempting to run separate copies of the same application.

The actual node that is killed is based on taking the first running application and killing off the
server which started that application first. The check for duplicate application status is carried
out approximately every 10 seconds.

The above situation is the worst case scenario that can be avoided most of the time be use of
redundant links and ensuring each application has a checklist.

Page 163

 Linuxha.net Administrator’s Reference

21.7 Data Consistency Issues

Sometimes after a particular event it may be wise to ensure that a forced data synchronisation
takes place. This might be after a series of failures including failures whilst other synchronisation
events were taking place.

This is particularly likely when using “ENBD” for replication, but for peace-of-mind is also
available for “DRBD” configurations.

The synchronisation command below should be run from the primary server – running from the
secondary server might work, but has not been tested fully. The command to run is as follows:

clbuildapp --application X --force --verbose --sync

The force option is required since without it it will fail because typically this command is usually
run on applications that have not yet been fully defined in the cluster.

When using “DRBD” sometimes when using the above command it will immediately complete –
indicating that the synchronisation has not been performed. In this instance make use of the “--
forcesync” argument to force the complete synchronisation, for example;

clbuildapp --application X --force --verbose –sync --forcesync

Page 164

 Linuxha.net Administrator’s Reference

Part IV:

Technical/Developer Information

Page 165

 Linuxha.net Administrator’s Reference

22 Implementation details of “clstartapp” & “clhaltapp”
This is probably one of the most complex and widely used utility that will be used as part of the
cluster software. The “clhaltapp” is simply a link to the “clstartapp”, since much functionality is
shared.

The purpose of “clstartapp” is to start the specified application on the local node, whilst the
purpose of “clhaltapp” is to stop the specified application on the local node. if the specified
application is already running or already stopped then no action is taken (though this is only
possible if the cluster daemon is running on the node on which the action is taken.

22.1 Supported Command Line Arguments
The “clstartapp” currently supports the following command line arguments:

Argument Purpose
--application X Specifies the name of the application to start.
--file Where to send the output to (when verbose output is given,

overriding the default name and directory provided by the
cluster configuration file.

--force Perform a force start - this is required is the cluster is running
on a single server, (or the other server is not available for data
replication).

--reallyforce Perform a really forced start – this is necessary if you wish to
start the cluster using STALE or potenitally stale data.

--maxdelay N The maximum amount of time when waiting to un-mount a file
system before forcefully killing of the processes, (and waiting
for the application to stop).

--checks Perform the maximum amount of checking – results in a
slower startup, but is safer. Recommended, especially if you
have problems but can not identify them.

--verbose Verbose mode - log messages to stdout.

When running as “clhaltapp” the currently supported command line arguments are:

Argument Purpose
--application X Specifies the name of the application to stop.
--force Go through the steps of stopping the application, even if it

does not appear to be running.
--maxdelay N Maximum amount of time to attempt to un-mount a file system

before forcefully un-mounting it. This also defines the length of
time to wait for the application stop script to complete before
killing the application.

--verbose Verbose mode - log messages to stdout.

22.2 Default Argument Settings
If the “--maxdelay” option is not specified it will use the “application -> maxstarttime” and
“application -> maxstoptime” settings from the configuration file for the package, (for starting and
stopping the application respectively).

If the “--maxdelay” is missing and the configuration file does not contain default values, then a
default value of 30 seconds is hard coded into the program for both starting and stopping.

If the “--file” option is not specified then a file in the directory specified for the cluster logging in
the main “clconf.xml” file will be used (which must exist if you've built the cluster successfully).
The name of this default file will be as follows:

For stopping an application:

clhalt.<application_name>.log

Page 166

 Linuxha.net Administrator’s Reference

For starting an application:

clstart.<application_name>.log

If the start and stop programs defined for the application generate any output to standard out or
standard error they this will not appear in the log file specified, instead these scripts have there
own output location. Currently the following file names are used:

For stopping an application:

/var/log/cluster/<application_name>.start.log

For starting an application:

/var/log/cluster/<application_name>.stop.log

Page 167

 Linuxha.net Administrator’s Reference

22.3 Ascertaining Cluster Status
Whether the utility is run as “clrunapp” or “clhaltapp”, the first major purpose of this code is to
validate the status of the cluster. This is done using the “remote_node_available” function
– which returns a list with two items, the values of which are defined as follows: :

Return Value Meaning
0,undef The cluster is up and running - both nodes are available and the IP connectivity

used for file system synchronisation is working as expected.
1,undef The remote node appears to be completely down.
2,name|IP The remote node is partially up, (not supporting synchronisation channel). It can

be communicated with using the returned name or IP address.
(Communication is ssh protocol).

3,IP The node can be pinged on the specified IP address, but no channels offer ssh
capability.

This function is called with two arguments: the name and IP address used to replicate the data.

The algorithm used has been greatly simplified since the original inception of this project – this
is due to practical states that are likely to occur in the real-world environments, rather than
attempting to deal with every possibility – which was overly complex and hence actually prone to
making incorrect decisions.

22.4 Starting cluster packages - Condition Decisions
The output from the previous utility is then used as a basis for further tests to ascertain the
status of the cluster. The purpose of these decisions is to further indication whether the local
and / or remote data sources are current and hence whether the application can start at all,
based on the command line argument supplied.

Before doing anything we ascertain the validity of the local and remote data by looking for
“STALE” files in the following directory:

/cluster/control/.status/<application>

We then set flags to indicate whether the local node (the node on which we are trying to start
the application) thinks the local and remote copies are valid or not. If available the information
on the remote node is retrieved and compared. We also look for the “TIME” file on each node -
this contains the UNIX time when the application was last started on that node, the most recent
is believed if there is a discrepancy between the nodes.

Page 168

 Linuxha.net Administrator’s Reference

Decision 1: Voting on Data Currency
The first decision is only acted on if the status of the cluster is clean - return value “0,undef”
from the “remote_node_available” feature. This decision does the following:

1. Can we get a list of the status files for this package from the remote node? If not
change status to “3” and take no further action in this decision.

2. Get details of the STALE flags from the remote node – do they agree?
3. If so then we believe the local node and set “ldata_current” and “rdata_current” to

suitable values and finish the decision process.
4. Now the flags do not agree and so we attempt to get the TIME values from each node,

(the time the package was last started on the cluster. If both have copies then we
believe the STALE settings from whichever node is the most recent. If only one node
has a TIME file then we believe that node.

5. Unless the “--force” argument has been specified then we abort – without it we believe
whatever the local node indicates.

Page 169

 Linuxha.net Administrator’s Reference

Decision 2: No Remote Host Appears Available
If the cluster consistency check returned “1,undef” it means that the remote node is appears to
be down completely. if this is the case then the steps below will be taken:

1. Unless the “--force” option is specified then we abort. This is because if the remote
node is not available it is not possible to guarantee 100% that the local copy of the data
is the most recent, (or the STALE flags locally are actually the most up to date).

2. If the local data appears to be current, we indicate the remote node is not and start with
a warning.

3. If the local node has indicated that it believes its local copy is not valid, then if “--
reallyforce” has not been specified an error is given. If “--reallyforce” has been specified
then we must set the local copy to valid, and delete all the STALE flags for the local
node.

It should be noted that this decision is a very important one. This ensures that if the user has
specified “--reallyforce” the local data copy will be used - even if we know it is not up-to-date.
The impact of this is that when the remote node is added to the cluster it’s copy of the data will
need to be over-written.

Decision 3: Starting a package with no Data Replication Channels
This decision is called into affect when the return code from the “remote_node_available” is
“2,IP”. This means that it is not possible to access or update the remote data source, but it is
possible to run “ssh” commands using the specified “IP” address.

The biggest point to note here is that if the local copy is out of date then we must only accept it
as the valid copy (which is our only choice here), if the “--reallyforce” flag has been specified.

The steps taken by this decision are as follows:

1. If neither node has a TIME setting then be believe the local STALE flags, if any. If the –
force option has not been specified then we abort (some risk we might be incorrect in
assuming the local settings).

2. If there node has a TIME setting then we believe whatever flags that node currently
has.

3. If borth nodes have settings we believe whichever has the the most recent TIME status.
4. From the above points we will have set “ldata_current” and “rdata_current” according to

the particular node. Now if the ldata_current is 0 then we abort – unless the “--
reallyforce” flag has been specified.

The above series of checks are attempting to ensure that when the data synchronisation
channel is not available we only continue if the local node is current, the remote node is not
currently hosting the application.

The “--reallyforce” flag will allow a non-current start up, but again should be used with caution.

Page 170

 Linuxha.net Administrator’s Reference

Decision 4: Can ping node, but not communicate

1. If the local host things the remote node is the live node, and a ping returns OK, then we
must are at some risk of not using the most up to date information – hence if the “--
force” or “--reallyforce” options have not been specified then we abort.

2. If the host thinks that the local copy is valid, then we use it, and indicate that the remore
copy is not valid.

3. If the local copy is not valid then we abort – unless the “--reallyforce” option has been
set, and in this case we issue a warning and start the the local stale copy.

22.4.1 Actions on a Clean Start-up

Now that the decisions used to validate the status of the cluster have been showed a “clean”
start up consists of the following steps:

• The “mkmdcfg” utility is called to generate an up to date RAID configuration file
containing all details of the local NBD and LVM devices used for this particular
package.

• If the remote data is classed as current the following actions are then taken:
o A call is made to the remote server to run the “nbd_svrstart” utility to check to

see if any NBD or ENBD servers need starting.
o If necessary a call is made to the remote server to run the “nbd_svrstart” utility

to start up all NDB or ENBD servers on the remote system.
o The “nbd_clientstart” utility is run locally in check mode to see if any NBD or

ENBD clients need starting.
o If necessary “nbd_clientstart” is used again to start any clients necessary.

• A call is made to the “getmdlist” utility to get the details of the RAID and NDB mapping
information to configure the RAID infrastructure.

• For each RAID device a call to “mkraid” is used, with the flags “--really-force”, “--no-
delay” and “--dangerous-no-resync” to create each specific device.

• If the remote data is not considered current then the “raidsetfaulty” utility is called
against the NBD or ENBD device for each RAID device used for the application.

• If the local data is not considered current then the “raidsetfaulty” utility is called against
the LVM device for each RAID device used for the application.

• Now that all the RAID devices have been started, (with the local or remote devices
faulted if necessary), the next step is to mount the file systems, which consists of the
following steps, against each device taken from the “fsmap” file:

o Get the type of file system expected and run “fsck -a” against it to repair the file
system if necessary.

o If any “fsck” returns a 4 then a reboot is required before the application can be
used - and hence an error is returned and the package start aborted.

o The “mount” command is used to mount the file system on the required mount
point.

• Now that the file systems are mounted the next step is to assign the IP address of the
package against one of the interfaces registered.

• The next step is to start the application using the script specified in the application
configuration file, (or issue a warning if this script does not exist).

• The flag files indicating the status of the application are written to the local and remote
nodes.

• If the file “/etc/cluster/<application>/lems.local.xml” exists then a “Lems” session is
started to monitor the package locally.

• Lems is then responsible to monitoring the status of the package on the local node -
see more on “Lems” and its interaction with the Cluster daemon later.

22.4.2 Actions on a Clean Shutdown

here

Page 171

 Linuxha.net Administrator’s Reference

22.4.3 Actions on a non-Clean Shutdown (no remote available)

The key here is that once the file systems have been unmounted the “unsync” flags for all file
systems will have been created. In this instance it is important that the cluster does not attempt
to do anything with the remote node, so suitable “STALE” flags will be created (in the format
“VG.LV.remoteserver.STALE”) once the application is started:

./clhaltapp --application apache --verbose --maxdelay 10

The format of the output will be similar to the following:

INFO 21/09/2003 11:03:56 Global section configuration validation complete
INFO 21/09/2003 11:03:56 Checked that node names resolve to IP addresses
WARN 21/09/2003 11:03:59 No response from remote node using ssh
WARN 21/09/2003 11:03:59 Ensuring the cluster is not forming - will take
approximately 10 seconds
INFO 21/09/2003 11:04:11 Checking heartbeats for any sign of life...
WARN 21/09/2003 11:04:11 Checking heartbeat serverb via ssh...
WARN 21/09/2003 11:04:14 Checking heartbeat serverb2 via ssh...
WARN 21/09/2003 11:04:17 Attemping UDP ping of 172.16.177.101...
WARN 21/09/2003 11:04:19 Attemping UDP ping of 172.16.177.111...
WARN 21/09/2003 11:04:21 Remote node is down
WARN 21/09/2003 11:04:21 Specified application stop script does not exist
INFO 21/09/2003 11:04:21 File system /apache/admin already un-mounted
INFO 21/09/2003 11:04:21 File system /apache/logs already un-mounted
INFO 21/09/2003 11:04:21 File system /apache/docs already un-mounted
INFO 21/09/2003 11:04:21 IP address 172.16.235.200 removed after 1 attempts.
INFO 21/09/2003 11:04:21 Attempting stop of RAID device /dev/md0...
INFO 21/09/2003 11:04:21 RAID device /dev/md0 stopped.
INFO 21/09/2003 11:04:22 Attempting stop of RAID device /dev/md10...
INFO 21/09/2003 11:04:22 RAID device /dev/md10 stopped.
INFO 21/09/2003 11:04:22 Attempting stop of RAID device /dev/md1...
INFO 21/09/2003 11:04:22 RAID device /dev/md1 stopped.
INFO 21/09/2003 11:04:22 Stopping all active NBD clients...
INFO 21/09/2003 11:04:23 All active NBD clients stopped.
WARN 21/09/2003 11:04:23 Remote server not responding - can not shutdown NBD servers.
INFO 21/09/2003 11:04:23 Removing LIVENODE control files...
WARN 21/09/2003 11:04:23 Remote server not responding - can not remove LIVENODE
files.
INFO 21/09/2003 11:04:23 Removing CURRENT file for serverb...
WARN 21/09/2003 11:04:23 Remote server not responding - can not remove CURRENT files.
INFO 21/09/2003 11:04:23 Application apache shutdown successfully.

Page 172

 Linuxha.net Administrator’s Reference

22.4.4 The “getmdlist” Utility

This utility can be found in the directory “/sbin/cluster/utils” and is used on a node that is
currently running an application to get RAID information regarding that application. The most
useful information is returned when using the “--status” option, as shown below:

servera# /sbin/cluster/utils/getmdlist –application apache –status
app01vg.admin:0:18:active:local:raid1:syncing:18060/20480:166.000000:0.200000
app01vg.logs:10:2:active:local:raid1:unsync
app01vg.docs:1:19:active:local:raid1:unsync

Page 173

 Linuxha.net Administrator’s Reference

23 Implementation Details of “clrunapp”

23.1 Introduction
The previous chapter included lots of information covering the decisions that the “clstartapp”
utility made in ensuring that when an attempt to start an application on a node was made that
the specified node was suitable and access to a valid copy of data was available.

The “clstartapp” was always designed to be a “low-level” utility – that was to provide a powerful
tool to start applications, (even allowing applications to be started when the local node was not
part of the cluster). However it has several “limitations”:

• It is too powerful – the ability to start applications when the cluster is not running, or against a
stale copy of the data is something you really want to discourage users from doing, unless
they absolutely must.

• Complexity – it supports many command line options – most of the time a simpler interface to
get an application started quickly is preferable.

• Locality – The command had to be run on the node where you wished to start the
application. Not really a problem, but you might have to keep changing nodes when
attempting to start lots of applications.

For the above reasons the “clrunapp” command was designed, (and first implemented in version
0.6.0). The interface to the “clrunapp” command is very simple:

clrunapp --application X [--node X] [--nodeps)

So in most cases you simply need to pass in the name of the application you wish to start – as
simple as that. This command is designed to make use of some additional directives that can be
supplied as part of the application configuration file for the cluster:

PREFERRED_NODE

This directive appearing in the “global” section of the configuration for an application has the
following purpose:

This defines the name of the node which should be used to run the application
assuming that both nodes are running cluster daemons. Please note that this choice is entirely
based on the concept of each node being “UP” - that it is running a cluster daemon. The choice
does not take into account (at least currently) of the location of the valid copy of data, but the
underlying “clstartapp” - when called – is able to deal with the processes running on one node
whilst the data resides on another.

The returned node name will be the value of “PREFERRED_NODE” if set, or the only node in a
cluster if the other node is not available. There is also a special value that can be used -
LEAST_LOAD - if both nodes are available then node node name returned is based on the
node currently running the least number of packages.

If not specified the current node or the node with the local data, or the
--node command line option will be chosen.

Page 174

 Linuxha.net Administrator’s Reference

24 Understanding the “Lems” Daemon

24.1 Introduction
This is probably one of the simplest components of the cluster infrastructure as a whole, yet
possibly is the most important. Lems - “Linux Event Management System” is a program that is
responsible for monitoring an application in the cluster and taking actions based on the results
of the monitoring.

At its heart “Lems” could almost be considered as a simple scheduler - at regular intervals it will
wake up and run particular monitors. It will then perform actions based on the return codes each
monitor. When a “Lems” process for an application is started by the cluster it runs as a
background task - and thus it is possible that several different “lems” daemons can be running
an the same node at any one time.

Like most of the software currently for “Linuxha” the “lems” program is written in Perl. The major
advantage of this approach is that it provides a simple object interface for monitors - allowing
additional modules to be easily written. It is also possible to call executables to run though such
an approach is less flexible. It does not put a limit on the number of monitors it can run, and the
interval can be configured to be anything between .5 and 3600 seconds between monitoring.

☞ It is recommended that any monitor that needs to be run more often than once every 10
seconds should ideally be written in Perl and should contain no execution of external commands
- reducing system overhead.

The purpose of “lems” is to run and respond to monitors at regular intervals - it is not a job
scheduler in any classic sense - it does not guarantee what and when or put any ordering of the
monitors it runs. It is also single-threaded, meaning that the monitors that do run must relinquish
control quickly otherwise other monitors will not be able to run.

24.2 The Lems Configuration File
Lems requires a configuration file to do any useful work. There is one configuration file for each
“Lems” daemon currently running. In common with all user-editable configuration files supported
by “Linuxha”, this is a basic XML file. An example configuration file can be found on the
following page.

The example file contains three entries, and these example entries are based around the
requirements for monitoring the network functionality for a particular package. It is envisaged
that the actual cluster utilities will be able to generate skeleton configuration files for “Lems” for
levels - though currently it is the responsibility of the administrator to take a sample configuration
file and manually adapt it to the requirements for the particular application that is being
clustered.

Page 175

 Linuxha.net Administrator’s Reference

<?xml version="1.0"?>
<lems_config>
 <globals modules="/sbin/cluster/lems/modules"
 programs="/sbin/cluster/lems/programs"
 logs="/var/log/cluster/lems/logs"
 port=”8900”
 />

 <check>
<name>flag_check</name>
<type>internal</type>
<module>flag_check test01</module>
<interval>5</interval>
<action_list>

<action rc="0" action="NOP"/>
<action rc="1" action="%RCDATA%"/>
<action rc="2" action="ABORT"/>

</action_list>
</check>

<check>
 <name>httpd</name>
 <type>internal</type>
 <module>procmon /etc/cluster/apache/httpd.xml</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="STOP"/>
 <action rc="2" action="FAILOVER"/>
 </action_list>
</check>

<check>
 <name>ip</name>
 <type>internal</type>
 <module>ip_module test01</module>
 <interval>10</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="RUN move_ip"/>
 <action rc="2" action="STOP"/>
 </action_list>
 </check>

 <check>
 <name>link</name>
 <type>internal</type>
 <module>link_module test01</module>
 <interval>2</interval>
 <action_list>
 <action rc="0" action="NOP"/>
 <action rc="1" action="RUN move_ip"/>
 <action rc="2" action="STOP"/>
 </action_list>
 </check>

 <check>
 <name>move_ip</name>
 <type>internal</type>
 <module>ip_move_interface test01</module>
 <interval>0</interval>
 <action_list>
 <action rc="0" action="STOP"/>
 <action rc="1" action="ABORT"/>
 </action_list>
 </check>

 <check>
 <name>fsmon</name>
 <type>internal</type>
 <module>fsmon apache</module>
 <interval>10</interval>
 <action_list>

Page 176

 Linuxha.net Administrator’s Reference

 <action rc="0" action="NOP"/>
 <action rc="1" action="PAUSE 30"/>
 <action rc="10" action="PAUSE 60"/>
 <action rc="2" action="STOP"/>
 <action rc="3" action="FAILOVER"/>
 </action_list>
 </check>
</lems_config>

In the above example, the first section is the “globals” section which where logs are written, and
where Perl modules to load and external programs to run are expected to be found. This section
also contains the port number on which this particular lems service should listen on for requests.
For information on the requests understood by the lems daemon see the “Server Messages”
section below.

The rest of the configuration file is a series of checks that are run. For each check the following
fields are defined:

Element Purpose
Name The name of the check - each check must have a unique name.
Type The type of the check - either “internal” or “program”.
Module The name of the module or program to use, and any arguments to pass to it.

If this is a module there is no need to put on the “.pm” on the end - it will
assume this.

Interval The number of seconds to wait before running the check for this monitor.
This is the minimum amount of time to wait. It can be any value, upwards of
0.5 seconds.

Action_list This is a list of possible return codes from the program or module. If no
matching return code is found a warning is issued in the log, but no further
action taken.

The available actions are described below.

Page 177

 Linuxha.net Administrator’s Reference

24.3 The Lems Action List
One of the key aspects of the “Lems” system is that of the action list. For every event to run it is
possible to define a list of actions to be carried out based on the return code from the check.
The table below shows the available return codes currently supported:

Action Purpose
NOP No operation. Do nothing - “Lems” will continue to schedule this check

and will look for further checks to run.
HALT|STOP [check] Indicates that if the specified check is scheduled it should be suspended

and not be checked until further notice. If the check is not specified then
the current check is suspended.

START|RUN check
[int]

This indicates that specified check should be started again if it is not
currently running. The “int” is optional and specifies the new interval to
use when checking.

ABORT Indicate that the Lems scheduler should abort.
FAILOVER The lems module should abort, but before doing so send over a

FAILOVER message to the local cldaemon for the current application,
causing the application to stop or fail-over, depending on the status of
the cluster.

HALTAPP|STOPAPP Rather than fail-over the application simply shut it down and do not
attempt to start it on the other node in the cluster.

PAUSE [X] Do not alter the interval for the specified check, but do not schedule it
again for X seconds. If “X” is not specified then it defaults to 30
seconds.

RUNCMD cmd arg.. The specified external command is run along with the supplied
arguments. See the notes on this functionality below.

REMOVEMON When this value is used the monitor in question is completely removed
from the configuration.

The “Abort” option is used to indicate a situation where the currently monitored cluster is either
being stopped by the user, or a condition requires the node to fail-over.

For each return code more than a single action can be specified - use a semi-colon to separate
multiple actions. If any action is not possible or is syntactically incorrect it will be ignored, and
any remaining actions will be carried out. For example:

RUNCMD email root; rubbish; FAILOVER

In the above case the external command would be run, the second command would be ignored
and the final “FAILOVER” command would then also run.

When using the “RUN” action the specified check will be scheduled to run at the current time
plus the interval, rather than immediately.

In the example configuration on the previous page one of the action list entries for the
“flag_check” monitor was “%RCDATA%”. When this is used then monitor is able to set the
$::RCDATA variable to a value which is then used as a replacement for the “%RCDATA%”
occurrence in the action. This allows the actions list to be dynamic.

Page 178

 Linuxha.net Administrator’s Reference

24.3.1 Using the “RUNCMD” Action

When this action is used the specified external command is run. All standard output and
standard error text are redirected into the following files respectively:

/var/log/cluster/lems/application-monitor.stdout
/var/log/cluster/lems/application-monitor.stderr

The command in question is run in the background - that is if multiple actions are specified do
not rely on the external commands from completing first.

Currently there is no way of capturing the return code from the external command and
configuring lems to act on this value. If necessary the external command, (which would be a
simple shell script for example) should use the “lemsctl” command to send messages to the
daemon.

Page 179

 Linuxha.net Administrator’s Reference

24.4 Standard “Lems” Monitors
As previously stated the monitors used can either be classified as “system” or “application”.
“System” monitors are pre-built and are used to manage the cluster software and configuration.
Not all system monitors need be used - the configuration of the monitors is currently in the
hands of the implementer, though several templates will likely be included.

If a “Lems” monitor is a binary program/ script rather than a Perl package, then it should be
located in the directory “/sbin/cluster/lems/programs”. The Perl packages should be located in
the “/sbin/cluster/lems/modules” directory.

The example of a “Lems” configuration file previously showed some of the monitor scripts that
will be typically included:

Monitor Purpose
flag_check This checks the directory “/etc/cluster/<application>/flags” for files and

when it finds one matching a name of another lems object it will halt
those checks. Removing files matching objects will cause those checks
to be re-scheduled again.

ip_module This is used to monitor the specified applications IP address. If it is
unable to find the address, or does not get the number of responses
expected it will send a return value indicating the IP address should be
moved to another interface.

link_module This is a low level interface check. It will find the interface used by the
application IP address and if supported will check that the card has a
link to the switch. If supported and it does not, then it will set a return
code to move the IP address to another interface.

ip_move_interface This is the module that is included but not scheduled to run. It is
triggered by instances of the “ip_module” or the “link_module” and will
attempt to move the current IP address to another interface. If it believes
that it has been called too often or no other interfaces exist it will abort,
causing the “Lems” session to exit with a failover message – which is
sent to the local cldaemon to initiate a fail-over of this package.

fsmon This is probably the most important monitor that exists – it is responsible
for handling data consistency between the local and remote copies of
data.
Much more information on this module can be found below.

procmon This is a general process monitor and one or more instances of this
module are typically used to monitor the application processes.

swap_check A monitor that can be used to trigger actions if the available free swap
space drops below a specified minimum.

capacity_check Checks the free space in one or more file systems, and if the used
capacity exceeds a threshold an action is taken.

Each of the standard checks above will now be discussed in a little more detail.

24.4.1 The “Flag_check” Module

This module in essence is simply used to stop and start other modules! Although this sound a
bit strange it is actually a fundamental requirement for high availability software. Typically this
might be used to stop monitoring of part of the application whilst some changes take place -
otherwise the monitoring may cause the application to be re-started, or attempt a fail-over.

It will send “STOP” messages to the module named as a file in the application directory on the
local machine, which will be “/etc/cluster/<application>/flags”. If the monitor specified does not
exist a warning will be given.

When the specified file is removed from the directory the module will send the target module a
“START” message to ensure the module is started again.

Page 180

 Linuxha.net Administrator’s Reference

As can be seen from the sample “Lems” configuration file, all actions are handled by a return
code of 1, setting $::RCDATA to store details of modules to start and stop at this moment in
time.

24.4.2 The “Ip_module” Module

This module is responsible for checking IP connectivity to those IP addresses defined for this
package, (if any). It also ensures that one of the interfaces specified actually has the IP address
for the package assigned to it – and if not assigns it.

When this module is unable ping the addresses successfully it will exit with a return code of 1,
which is used by the Lems session to call the “ip_move_interface” routine.

24.4.3 The “Link_module” Module

This module checks for link level activity on the network interface currently in use for this
package – if the specified interface supports such checks. If link beat can not be established it
again uses return code of 1 to ensure Lems activates the “ip_move_interface” module.

24.4.4 The “Ip_move_interface” Module

This will move or assign the IP address for the current package. It maintains a history of activity
– and if a certain interface has already been used recently it is discarded from the list of
candidate interfaces to use.

If the return code is 0, it means that the IP address has been assigned to an interface and this
module can be put to sleep. If 1 is returned, it indicates to “Lems” that the “Failover” action
should occur – which may result in a fail-over for the package being attempted.

Page 181

 Linuxha.net Administrator’s Reference

24.4.5 The “capacity_check” Module

This can be useful if a particular application relies on one or more local file systems having
space available for it to operate - such as in “/var” and “/tmp”. The file systems to monitor are
specified using the following syntax:

FS:CAP[,...]

For example to trigger if “1” return code on “/tmp” being greater 75% full and/or “/var” being 90%
full, the argument specified to the monitor would be:

/tmp:75,/var:90

This module requires that the “syscall.ph” file is available, since it queries the available free
space via the “statfs” system call.

If the monitor fails the header files may need to be converted to suitable Perl equivalents using a
command such as:

cd /usr/include; h2ph -r -l .

Please consult the Perl documentation for more information on the “h2ph” command.

24.4.6 The “swap_check” Module

This simple monitor checks the available free swap space and if it drops below a certain
threshold will return a “1”. The threshold is specified in Kb - and if not specified will default to
51200 - 50Mb.

24.4.7 The “Fsmon” Module

This module is responsible for ensuring that the local and remote copies of the data for a certain
application remain in sync if possible, and if not possible, are flagged as being out of sync as
soon as possible.

When a particular logical volume becomes out of sync it will attempt to schedule re-
synchronisation if possible, for each affected volume, clearing the out-of-sync flag once the
synchronisation is completed.

If necessary it will stop/start some or all of the NBD or ENBD clients and servers to ensure that
all possible avenues to start synchronisation are performed.

This module interfaces with the local cluster daemon to perform any actions on the cluster. This
ensures that the cluster daemon contains all the necessary functionality, whilst this monitor
remains free of as much of the resynchronisation code as possible.

Since the recovery mechanisms are different if the “fr1” module is in use compared to the “raid1”
personality the code checks the type of RAID in use and alters the behaviour it uses
accordingly.

The following table shows the various state changes that the monitor uses to assess the current
conditions of the environment.

State Checks / Purpose
0Original status – here we ascertain the status of the RAID device information to
see if any devices are currently STALE. If any stale devices are found the
information is sent to the local cldaemon (if running) via the following message:

FLAG_UNSYNC app=X vg=Vg lv=LV invalid=local|remote forward=yes

Any synchronised devices send the following message to the local daemon:

Page 182

 Linuxha.net Administrator’s Reference

State Checks / Purpose
FLAG_SYNC app=X vg=Vg lv=Lv forward=yes

If no valid response occurs then the State is changed to 10, Substate to 0,
which is used to indicate that it appears that the daemon is currently down. If
the flags have been sent successfully we set the STATE to 10, substate 11 –
which is used to check NBD IP communication is available, and create a new
STALE_LIST and set the current syncing device (MD_SYNC) to the undefined
value.

2

Firstly there is a check to see if communication channels exist to the local and
remote daemons, and if they do not then the state is changed to 10, using sub-
states 0 and 1 respectively to ensure that this communication is available.

Now the substate is defaulted to 1 and “tries” to 1 if substate is not currently set,
then the following substate checks occur:

1) The following message is sent to the remote daemon to ensure that the
ENBD server processes are running:

CHECK_NBD type=server app=App

If the response is “OK” then substate is set to 2 and this check exits. If the
check is not “OK” then the following message is also sent to the server:

START_NBD app=App

If the response is OK then the substate is changed to 2 and “dorefresh” is
set. Otherwise the routine will try again for a maximum of 3 attempts before
pausing and waking up 60 seconds later at try everything again.

2) The local daemon is sent the following message to check the NBD client
connections:

CHECK_NBD type=client app=App

If the clients are OK then the state is set to 9, and “dorefresh” is 0. If the
result is not OK then the following message is sent to attempt to start the
client side processes:

START_NBD app=App

If is attempted a maximum of three times, before resetting the State to 0
again after a pause. If this works then the State is again set to 3 and
“dorefresh” is set to 0.

3

If no devices exist in the “stale_list” then return to state 0. Otherwise is any NBD
devices are marked as “disabled” a “0” is sent to “/proc/nbdinfo” to attempt a
recycle of the devices. If this has occurred for three times then a warning is
issued and state is returned to 0.

If no ENBD devices are disabled then a “raidhotadd” is sent to all devices,
(additionally a “raidhotremove” is sent if “fr1” is not detected). After this the state
is changed to 6, and “insync” is set to an undefined value, and “tries” is reset to
0.

6

This state is used when we expected devices to be synchronised. It will check
to see if any “insync” device has been set and if not, will set one, if one is
available, (device that is currently in progress of being synchronised).

If no stale devices are found, (remote stale devices more accurately), then the
state is return to 0 – which then sends the SYNC status information to the
daemons.

If no devices start to sync after 3 tries then a warning is issued and state is
return to 0 to look for other problems.

If a device is being synchronised then the number of blocks to sync is checked.
If this stays the same for 3 passes then state is returned to 0 for further checks.

10This state is used to indicate that the local daemon does not appear to be
running (typically if the server is not actually running, or there has been a time-
out due to other cluster activity).

If the Substate is 0 then it attempts to create a new channel to the local daemon
and if it succeeds then it keeps State as 10, but sets the Substate as 1.

Page 183

 Linuxha.net Administrator’s Reference

State Checks / Purpose
if it fails then it sets a return code of 1 indicating that the test should be repeated
again in 60 seconds.

When the substate is 1 then the purpose is to validate that a remote connection
is available, and that the remote daemon can be contacted. Again if it can not
then a pause of 60 seconds is expected due to a return code of 10.

If the substate has been set to 11 then aim is to validate that communication
can be attempted over the NBD channel and if not to try again after 30 seconds.
Once the communication has been established then the state is returned to
SAVED_STATE or 0 if not defined.

Page 184

 Linuxha.net Administrator’s Reference

24.4.8 The “procmon” Modules

This module is used to monitor processes. The argument given is the name of a configuration
file to parse which contains the information to monitor. The return codes can indicate that no
action should be taken, (normal conditions), that the monitor should stop (a non-fatal, probably
coding error, has occurred), or initiate a fail-over, since the application being monitoring is not
running, or can not be restarted.

A sample configuration file might look like the following:

<?xml version="1.0"?>
<procmon>
 <global>
 <logdir>/var/log/cluster</logdir>
 <restarts>3</restarts>
 <resetwindow>3600</resetwindow>
 <restartcmd>/apache/admin/apache restart</restartcmd>
 </global>
 <process>
 <label>Web Server</label>
 <user>nobody</user>
 <process_string>httpd</process_string>
 <min_count>1</min_count>
 <max_count>10</max_count>
 </process>
</procmon>

In the above example, the “process” entry can be repeated several times, allowing the same
module to monitor different processes. A summary of the entries included in this configuration
follows:

Field Purpose
global.logdir The directory where log files are kept for the monitor in

question. If this is not specified it will default to
“/var/cluster/log”.

The actual name of the log file will be in the following format:

procmon-<application>-<name>.log

global.restarts The number of times the process should attempt to be
restarted on this host before considering a fail-over to the
other node in the cluster. Must be specified.

global.restartcmd The command to run to restart the application that is being
monitored. Should be the full pathname and can refer to the
paths provided by the package if necessary.

global.resetwindow The length of time after which the current number of available
resets is set back to the default (in seconds). If this is not
specified it defaults to 3600 (one hour).

process.label The text string to use in the log file if the specified process
fails. Must be present.

process.user The user to look for processes against, if not specified will
default to “.*” - which will match all users.

process.process_string The process string to look for – must be present. This can be
a normal string or a Perl regular expression.

process.min_count The minimum number of instances of the process that must
be running, default is 1.

process.max_count The maximum number of instances of the process that must
be running, default is 999.

It also accepts the following custom commands to manage the status of the monitor (for
information on how these messages are sent please see the following section).

Message Purpose
RESET Reset the restart counter to 0.
MAXCOUNT N Change the maximum number of restarts before triggering a

Page 185

 Linuxha.net Administrator’s Reference

Message Purpose
fail-over to “N”.

24.5 The “Lems” Server Messages
Each instance of a lems server has the ability to listen on a port specified by the “port” attribute
in the global configuration options. This encrypted channel uses the same key for the cluster as
other communication channels and is used primarily to ensure the “clstat” utility, the cluster
daemon “cldaemon” and “lems” daemons can communicate where necessary.

At the moment the range of requests accepted and actions by the lems server are quite limited
as the following table below shows.

Page 186

 Linuxha.net Administrator’s Reference

Message Purpose
GET_STAT
[monitor]

This will return the status of all monitors for the given session. The output will
appear in the following format:

Event,nextrun,interval,command<nr>

. . .
If the monitor is specified then just a line for the that monitor is shown, otherwise
the detail for all monitors is shown. “nextrun” is the UNIXTIME in the future when
the monitor is next scheduled to run. 0 means that the monitor is currently
stopped.

GET_VSTAT
[monitor]

This is similar to the GET_STAT routine except that after the status line for a
particular monitor the output will include:

<monitor-detail-start>
detailed monitor information
<monitor-detail-end>

Note that the “detailed monitor information” may be 0 or more lines of text – the
format of which is monitor independent.

Again the routine can include a monitor name to restrict output just to that
monitor.

CMD monitor
msg

This sends the specified text to the specified named monitor if it exists. It will
return “OK text” if the message was sent successfully, “NOT_IMP” if the monitor
does not implement the “accept” method, or “FAIL text” if the monitor indicates
this has failed.

PAUSE
[monitor]

Stop ALL monitoring until further notice - typically used during periods of cluster
reconfiguration. If the “monitor” argument is given then just the specified monitor
is stopped (if it exists).

RESUME
[monitor]

Resume monitoring as it was prior to a PAUSE request. If the “monitor”
argument is given just the specified monitor is resumed.

REMOVE
monitor

Removes the specified monitor from the configuration – obviously use with care!

INSTALL
monitor

Adds the specified monitor name from the configuration – this monitor must not
already exist. The object type code is also re-sourced for this monitor meaning
that the underlying module code is also changed dynamically – good for
maintenance.

ABORT The lems session is aborted immediately - though the application will continue to
run without monitoring.

VERBOSE ON|
OFF

Allows the verbosity of the daemon logging to be altered without the daemon
having to be restarted.

LOGCYCLE NN Forces the daemon to switch log to a new log. The argument is the number of
older logs to keep. The older log names use the following naming scheme:

logfile_name.NNN

The first file has an extension of “000”.

All commands are sent to the daemon using the “lemsctl” command, which has the following
syntax:

lemsctl --application appname --msg “message”

24.6 The “Lems” Module Object Method Requirements
The “Internal” type of check is recommended when authoring new modules for the following
reasons:

• Efficiency - since the modules actually form part of the main “Lems” program, the
amount of effort to run the check is greatly reduced, (i.e. no fork/exec requirements).

Page 187

 Linuxha.net Administrator’s Reference

• Stateful - since the same object is used for every occurrence of the check the object is
able to store state information - this is used by the “ip_move_interface” module for
example to ensure we attempt a fail-over if Ip address moves are occurring too often.

The Object must support the following methods:

• new(arguments)

The arguments passed to new are those given in the “module” element in the
configuration file. White space is used to separate the arguments.

It is expected that a call to this will return a blessed reference or “undefined” if the
object can not be created. In the case when an object can not be created it is obviously
removed from the run schedule.

• check

Notice that no arguments are passed to this method. This method must use the
information passed to it from the new method, or the environment (see below), to
perform the required check. It is expected to return a numeric value which will then be
used by “Lems” to work out the action to perform, if any.

The check can also set the $::RCDATA value to be substituted in the chosen action for
the string “%RCDATA%”.

The following methods are optional:

• stat

This is an optional method which is called when the lems monitor receives a
GET_VSTAT request. If not specified the request will return empty information to the
requester.

• accept

This is another optional argument allowing the monitor to accept a “CMD” request
issued to the client environment. This is typically used in application monitor entries to
do things like reset counters.

24.6.1 Object Environment

Apart from the $::RCDATA variable, the following subroutines are available to the “new” and
“check” methods:

Subroutine Purpose
::logwarn(msg) Log a warning message to the console or log file.
::logmsg(msg) Log an informational message (if verbosity has been chosen), to the

console or log file.
::errmsg(msg,rc) Abort the lems session with the specified error message and return

code.

The objects also have access to the following global variables:

Variable Purpose
$::RCDATA Used for a substitution value for the %RCDATA% data macro in the

action list.

Page 188

 Linuxha.net Administrator’s Reference

%::SCHEDULER Hash where each key is the name of a check from the current
configuration file. Each value is a reference to a hash containing the
“EST” and “OBJECT” keys, containing the estimated next run time
and the OBJECT reference.

24.7 The “Lems” Program Execution Requirements
To be written

24.8 Writing a Sample Lems Monitor
The purpose of this section is to document how a simple Lems monitor can be written by using
the “swap_check” monitor as an example.

24.8.1 The “new” method

Since this monitor is very straightforward the “new” method only sets up a “LIMIT” variable to
remember the limit to check for:

package swap_check;

sub new {
my $self={};
my $lim;

 if(exists($_[1]) && defined($_[1])) {
 $lim=$_[1];
 } else {
 $lim=51200;
 }

 $self->{LIMIT}=$lim;
 bless($self);
 return $self;
}

Page 189

 Linuxha.net Administrator’s Reference

24.8.2 The “check” Method

The check method in this case is very straightforward - it simply queries the “/proc/meminfo” file
and returns “0” if enough free swap space is available or “1” if not.

sub check {
my $self=shift;
my ($fd);

 ###
 # Read in the memory information extracting required field #
 # from the line: #
 # SwapFree: NNN Kb #
 ###

 open($fd,"/proc/meminfo") or return(0);
 while(<$fd>) {
 next if ! /^SwapFree:\s+([0-9]+)/;
 $self->{LAST}=$1;
 close($fd);
 if($1 < $self->{LIMIT}) {
 return 1;
 } else {
 return 0;
 }
 }
 close($fd);
 return 0;
}

Please remember that since the code is part of an object that persists you must ensure that all
file descriptors are closed before returning from the “check” method, unless you specifically
define the check to be stateful and use the open file on subsequent calls.

24.8.3 The “stat” Method

The “stat” and “accept” methods are optional, and can return any string value. In this instance
an empty string is returned or the available free space and configured threshold configured
comma separated if the “check” method has been called.

sub stat {
my $self=shift;

 if(exists($self->{LAST})) {
 return $self->{LAST} . "," . $self->{LIMIT};
 }
 return "";
}
1;

Page 190

 Linuxha.net Administrator’s Reference

25 Understanding the Cluster Management Daemon

25.1 Introduction
Although previous information in this document covers what this daemon does, and how it can
be started, this chapter intends to cover the architecture of the daemon is some detail, and
describe the functionality it offers, who it is implemented, and why.

The cluster management daemon is responsible for co-ordinating all system-related cluster
reconfiguration operations. This means that it is the cluster management daemon, which takes
notice of the failure of the “Lems” session for an application and initiates a fail-over to the other
node.

Notice that the “Lems” sessions and the Cluster Management daemon communicate using
sockets on the local machine, though it is expected that all communications will be encrypted
and check summed using the key for each package to ensure that only those knowing the key
for a package, (which should be the “root” user only), is able to send valid messages to the
daemon.

☞ Although the current version of the architecture does not include these daemons “voting” on
the status of the cluster, such functionality may be used in the future (when clusters will be
larger than two nodes).

25.2 How the Cluster Daemon Interacts with an Application
Firstly it should be noted that it is possible to start an application without the cluster services
running - however this is not recommended for the following reason:

The cluster daemon is responsible for handling fail-over events and without the daemon running
this will not happen!

When starting an application the last action will be to check that the cluster daemon is running
and if so, send it a “STARTED_APP” message indicating that an application has been started
on the local node, and it will need to use “Lems” to monitor it and respond as appropriate.

If the cluster daemon is not running the “clrunapp” function will simply fork/exec the “Lems”
daemon in “daemon” mode - causing it to fork and then use “setsid()” to detach from the
currents session. This is achieved by using the “--detach” option when invoking Lems.

The Cluster daemon can be communicated to via a well known socket - this is fixed and
appears in the cluster configuration file, as the “port” option. All messages are of a certain format
and are encrypted, (see the information starting on page below). The “cldaemonctl” utility
provides a simple interface for sending messages and seeing the response from the cluster.

Thus the Lems session can attempt to signal a fail-over, though unlike an application such as
“MC/ServiceGuard” having the monitor simply die is not enough – it will need to send a
message to the local daemon to explicitly indicate that a fail-over is desired. This ensures that if
a bug occurs in the “Lems” system, (which is distinctly possible given that administrators can
add or alter modules if they desire), this will not cause a fail-over event to occur.

However, “Lems” is not the only command that interacts with the cluster daemon – the “clstat”
command communicates with a running daemon (ideally locally), and also the Lems session for
an application if detailed information for a particular application has been requested.

Further the commands “clstartapp” and “clhaltapp” also send messages to the daemon to
indicate that the status of a package is changing, (indicating it is stopping, starting, stopped or
running).

Page 191

 Linuxha.net Administrator’s Reference

25.3 Forming the Cluster - Cluster Daemon Initialisation
This section describes the actions taken by the cluster daemon when it is started - via the
“clform” command rather than the “cldaemon” command directly.

The “clform” command accepts the following command line arguments:

Argument Purpose
--noapps Do not start any applicatoins that typically would be automatically started.
--force If the cluster daemon is unable to find start / find the details of the other node it

still starts (otherwise would fail).
--join Indicate that the cluster is already running and the node not currently running

should join the cluster.
--config Specify an alternative configuration file to look at for the cluster configuration -

typically used for development of the product only.

Notice that the “--force” functionality allows the cluster to form with only a single node being
present - or with both nodes present even if they do not have close or identical clocks (which is
obviously not recommended).

The “clform” command is responsible for calling the “cldaemon” command on one or both nodes
to ensure that the cluster is started or joined accordingly.

When called the “clform” process starts it performs the following checks to ensure that a cluster
can be formed or joined.

• Is there a valid cluster configuration file and will necessary mandatory details to start
the cluster?

If the cluster is to be performed the following checks are then carried out:

• Check to see that the cldaemon port is not being used locally already (if wishing to form
the cluster) - if so abort with an error message.

• The same check is then carried out on the remote node to ensure the cluster daemon is
not already running there either.

If the cluster is thought to be running and the “--join” flag has been specified then the following
checks are carried out instead:

• Do we believe that the other node is actually “up” - this attempts to get a connection the
daemon on the remote node or the local node, and checks that only a single node is
actually running.

• The attempt will abort if either both nodes are running, (form not necessary), or neither
node is actually running.

At this point “clform” will attempt to run the daemons on either or both nodes in the cluster,
depending on whether the cluster is being formed or just a single node is joining the cluster.

The actual process of forming the cluster or joining an existing cluster is then down to the
communication the “cldaemon” attempts:

• Either or both nodes have the cldaemon program run with either the “--form” or the “--join”
argument depending on the action required.

• If using the “--form” option the following actions take place:
u If running the primary server then we send a series of FORMING, STARTING and

UP messages to the other node to ensure it is also forming the cluster.
u If running on the secondary server then we immediately enter the main loop, but only

accept requests to form the cluster. Once formed the series of requests to accept
becomes the normal list.

u If the time difference between the two nodes is greater than a minute, but less than
10 minutes, issue a warning. If it is greater than 10 minutes then abort cluster
formation, unless the “--force” option has been specified.

Page 192

 Linuxha.net Administrator’s Reference

• When running the with “--join” option the cldaemon on the node that is to join the cluster
does the following:
u Attempt to get a ping to the other node, otherwise joining the cluster is abandoned.
u A connection to the already running daemon on the other node is opened and

“ECHO HELLO=yes” message is sent repeatedly using a random delay until a
response is returned.

u If a valud response is received (“UP” - indicating the other node is running a cluster)
prior to the time-out then the cluster is considered joined, otherwise this node aborts
joining the cluster.

• The primary server now checks the status of each application configuration file, and if
both nodes have the same information each application is registered in a state of
“STOPPED”.

• Otherwise if the IP address of the application is found then the application is registered
as “STARTED”, and the Lems daemon for that application is probed to see if it is running.

Once the “cldaemon” processes have formed the cluster then the “clstart” process will exit.

Page 193

 Linuxha.net Administrator’s Reference

25.4 Protocol and Messages
Since the cluster daemon is responsible for reporting on the status of the cluster and
applications, as well as automating fail-over, many messages are passed to it from user-invoked
actions, or between itself and the remote node to ensure both retain consistent state
information.

The general format of any message/request sent to the daemon is as follows:

MD5,REQUEST arg=val…

The complete request should be encrypted using blowfish using 448 bit encryption using the
codeword defined in the cluster configuration file. The “MD5” is the hex value of the checksum
of the unencrypted message to ensure there has been no corruption. The response from the
server back to the client will be in the same format.

The request and response are terminated by a line feed. Thus the encrypted string is actually
passed as hex rather than binary to avoid any confusion.

The requests handled by a cluster daemon are as follows. Please note that some of these
requests are sent from one daemon to another to ensure consistent cluster state is kept. In the
above table, yellow indicates something has been tested and currently works, whilst dark grey
means that it has not yet been written. The “cldaemonctl” program can be used to send the
daemon messages – as explained in previous sections of the documentation.

Request Purpose
TIME Returns the current time on the node (UNIX time). This is

used by the primary to check that the nodes are within a
certain time tolerance when starting, or when a node joins the
cluster.

ABORT When this is received the cldaemon in question will exit, no
matter what the status.

GET_NODE_STATE node=node Will return the status of the specified node in the cluster,
which can either be the node on the same node, or the other
node.

APP_UPDATE app=name
state=STATE [node=node
Monitor=monitor
starttime=time
consistency]
probe=yes
[forward=yes]

This is used by one daemon to tell the other that the specified
application state has been changed. States are STOPPED,
STOPPING, STARTING and STARTED. All other field
information is optional.
If the PROBE option is specified it attempts to see if the IP
address for the application is currently held by this machine,
and if so sets the application to UP status, and informs the
other node.
Forward is only used testing outside of the daemons...

STARTED_APP app=name This is sent from the clrunapp invoked by the user to tell the
daemon that the specified application has been started. The
daemon will be responsible for starting the required lems
session if the configuration file exists. Will trigger an
APP_UPDATE message to the other node in the cluster, (if it
is available).

STARTING_APP app=name
node=node

Message sent from one daemon to another to ensure that the
other daemon knows a particular application is starting on the
other node. Will trigger a APP_UPDATE to the other node in
the cluster.

Will respond with OK, ALREADY_STARTING,
ALREADY_STARTED or NOT_REGISTERED depending on
whether this application is ok, currently being started, is
running or is unknown.

If the node is not valid for this application, (due to a previous

Page 194

 Linuxha.net Administrator’s Reference

Request Purpose
software failure), it could also return “INVALID_NODE” -
introduced for version 0.6.0 upwards.

START_APP app=name Indicates to a node it should start the specified application
using the clrunapp itself. It should then send the remote node
a STARTING_APP message.

STOP_APP app=name This will stop the specified application on the local node. This
is typically used by lems to halt an application if it believes
that a fail-over is not a suitable action.
This will only work on the node that is currently running the
application, so ensure it is sent to the correct node. Return
codes will include, “OK”, “NOT_RUNNING” and
“NOT_REGISTERED”.

STOPPING_APP app=name Indicates to the remote node that the specified application is
currently in the process of stopping, (and so monitoring of
remote services should stop).

STOPPED_APP app=name Indicates to the remote node that the specified application has
now completed stopping and is down.

ECHO [check=y] Sent by one node to anther to check if the specified daemon
is up and running. When the “check” argument is specified the
node does not use this information to validate its partner is
available, (used by clstat command).

CHANGE_DSTATE state=state Change the status of the specified node - used when a cluster
daemon is starting.

ABORT
[forward=yes]

This forces the daemon to abort - typically done when the
cluster is starting or stopping.

CHECKSUM app=name This will the contents of the build.md5 file for the specified
application (if it exists). This is used by the cluster to ascertain
whether the contents of the build are the same and valid on
both nodes.

If it does not return the MD5 of the file then either of the
following is returned:

undef – remote node not responding
MISSING_ARG – missing the APP argument
NO_SUCH_APP - specified application does not exist.
NO_SUCH_FILE – the specified md5 file does not exist.
INVALID_FILE - the file exists, but does not appear to include
any data.

APP_LIST Will return a comma separated list of applications that the
cluster daemon currently knows about.

APP_STATUS app=name
[lvinfo=yes]
[failoverinfo=yes]
[nodeinfo=yes]

Get the status, node, start time, monitor (lems running or not),
and node consistency of specified application.

The response is in the following format (comma separated):
STATE - (STARTED,STARTING,STOPPING,DOWN),
server - on which server it is
monitor – 1 if lems monitor running, 0 otherwise
start time – the time package was started
consistency – number of inconsistent file systems

if “failoverinfo” is passed an additional element is returned –
“Yes” or “No”. This indicates whether the application will fail-
across. It will say “No” if the node is not available, or the valid
list for this application does not include the other node.

If “nodeinfo” is passed then an additional argument is
returned – the contents of the “validnode” list for this
application, with “+” is a separator between node names.

If “lvinfo” is passed then it will return the error state or “OK” on

Page 195

 Linuxha.net Administrator’s Reference

Request Purpose
the first line, and then the following fields for each LV, newline
separated:

• vg.lv – The volume group/logical volumes
• MD – The RAID device number
• ND – The NBD device number, (must be mapped to

character name if required).
• State – active or stopped or inactive.
• Valid – Valid data source local, remote, or both
• Personality – raid1 or fr1
• Action – Sync , unsync or syncing
If the action is “syncing” then the following fields will also be
present:
• valid/total – Kb valid and total blocks for this devices
• Rate – Rate of synchronisation in Kb/sec (floating point).
• Estimation – The estimated completion time in minutes

(floating point).
CHECK_NBD app=name
[type=client|server]

Given the specified application this will check to see if the
specified nbd clients (if this is the node running the
application), or nbd servers (if this is NOT the node running
the application), are in fact running.

The return values are as follows:
OK – All servers or clients for the application on this node are
running.
NOT_OK – One or more clients or servers on this node are
not running.
MISSING_ARG – Missing the app argument.
MISSING_CMD – Unable to find the nbd_svrstart or
nbd_clientstart commands.

STOP_NBD app=name
[forward=yes]
[type=client|server]
[vg=vg lv=lv]

This will stop the client and server for the specified NBD or
ENBD daemon for just the specified logical volume. If you
send it with forward it will send the request on to the other
node.

The cldaemon knows whether to stop the clients or servers,
depending on whether the application is running on that host,
though the optional type can be used if you wish to be explicit.

The “VG” and “LV” entries are optional – if they are not
specified then ALL entries for the application are stopped.

The return results are “OK”, “FAIL-LOCAL”,“FAIL-REMOTE”,
“MISSING_ARG” and “NOT_REGISTERED”.

Note: If the “type=” setting is used then it will forward the
request to the other node to answer the query if the
application is currently running, and the other daemon is
available.

START_NBD app=name
[forward=yes]
[type=client|server]
[vg=vg lv=lv]

This will attempt to start the specified NBD or ENBD server
and client on the necessary names for the specified NBD
service only.

As above the “LV” and “VG” are optional and if not specified
all entries will be started for the specified application, (or
restarted if they are already running).

This is typically used prior to a synchronisation attempt to
ensure the daemons are running. The return codes are as
above.

FLAG_UNSYNC app=name This is sent to indicate that flag files should be created to

Page 196

 Linuxha.net Administrator’s Reference

Request Purpose
vg=vgname lv=lvname
invalid=local|remote
[forward=yes]

indicate the specified logical volume has synchronisation
problems. It will create the flags locally and attempt to create
them on the remote node if possible.

The return results are as above; “OK”, “MISSING_ARG”,
“NOT_REGISTERED”, “FAIL-LOCAL” and “FAIL-REMOTE”.

This will create the VG.LV.node.STALE flag on the local
nodel, (on both hosts if the “forward” flag has been specified).
These flags are created in the following directory:
 /cluster/control/.status/application

FLAG_SYNC app=name
vg=vgname lv=lvname
[forward=yes]
[valid=local|remote]

This indicates that the specified logical volume for the
specified application is now valid, and hence any flags should
be removed from the local and remote nodes if possible.

If the ACTIVE value is specifed then then just the flags for
that node are removed. If FORWARD is specifed then attempt
to communicate the fact to the other node.

The return results are as above; “OK”, “MISSING_ARG”,
“NOT_REGISTERED”, “FAIL-LOCAL” and “FAIL-REMOTE”.

START_SYNC app=name
vg=vgname lv=lvname
[attempt=N]

This will instruct the daemon to attempt to get the specified
device to be synchronised. It will expect the flags to exist
locally to indicate which device is invalid and hence what the
direction of the synchronisation.

Please note that an “OK” return code does not mean that
synchronisation is underway, only that the commands to start
a synchronisation have been successful.

The “attempt” attribute is optionally and is used to allow the
same vg/lv to attempt synchronisation using different
methods. The default is 0, but the caller might invoke with
higher numbers, until “NO_METHODS” is returned to indicate
no further methods to attempt synchronisation exist.

Other return codes include “OK”, “FAIL-LOCAL”, “FAIL-
REMOTE” (the local node will forward the request to the
remote node if that node currently is running the specified
application).

Return codes such as “MISSING_ARG” or
“NOT_REGISTERED” are also possible.

FAILOVER app=name This is sent to the local node, and will indicate that the
specified package should be failed to another node if
possible.

DEREG_APP app=name
[forward=yes]

If the specified application is currently registered then de-
register it! It will return either “OK”, “NOT_REGISTERED” or
“MISSING_ARG”.

If the “forward” argument is given it will send the message on
to the other server in the cluster.

REG_APP app=name
[forward=yes]

Register a new application with the cluster - it wil force the
deamon to attempt to ensure that the application is valid and
load the details. It will return either “MISSING_ARG”,
“MISSING_FILE”, “NOT_CONFIGURED” or “OK”.

If the “forward” argument is given it will send the message on
to the other server in the cluster.

PNODE app=name This returns the “preferred” node to run the specified
application. This was introduced in version 0.6.0 to provide

Page 197

 Linuxha.net Administrator’s Reference

Request Purpose
improved handling of application start-up – especially when a
node has many applications.
Return values are “MISSING_ARG”, “INTERNAL_ERROR” or
“OK”. The format of the OK message is:
OK servername

DEPENDS_ON app=name This will return a comma separated list of applications that are
currently registered that must be started ideally before
attempting to start this application. This information is used by
the clform and clrunapp to define dependencies.
Return values are “OK applist or ERROR NO_APP”.

AUTOSTARTLIST This will return a list of applications that are currently
registered and have the “autostart” configuration values set to
“true” or “yes”.
Return values are:
OK app1[,app2...)

VERBOSE ON=true|OFF=true
[forward=yes]

This will turn on or off the verbosity for the local daemon . It
will accept the forward option to send on the request to the
other node in the cluster as well.

LOGCYCLE count=N
[forward=yes]

Cycles the current log (if the log file is a real file). Keeps a
maximum of N rotated logs, where N is 1 to 99.

GETVALIDNODES app=name Returns “OK nodelist”, where nodelist is a comma separated
list of nodes that are considered suitable to run the
application.

SETVALIDNODES app=name
nodes=A[,B] [forward=yes]

This will set the valid list of nodes that are registered to run an
application.

ISVALID app=name When sent to a cldaemon it will respond with “YES” or “NO” or
“NOT_REGISTERED”. This will be used by cldaemon to
check to see whether the application should be run on this
node or not.

HELP Produces a comma separated list of commands that the
daemon is currently responding to.

TOC The node that receives this signal will reset immediately -
without evening performing a shut-down or disk
synchronisation.

LOADAVERAGE Returns the 1 minute, 5 minute, 15minute load average
information for the node in the following format:

1min 5min 15min running/procs

If there is a problem getting the information it will instead
return:

ERROR

The list of supported messages is likely to continue to change, and so relying or using a
particular message apart from those discussed in cluster administrator steps earlier in the
document is not recommended.

Page 198

 Linuxha.net Administrator’s Reference

26 Cluster Utility Scripts

26.1 Starting “nbd” or “enbd” Servers
The utility “/sbin/cluster/utils/nbd_svrstart” can be used to start, restart or check that all “nbd” or
“enbd” servers for a particular application are running on the local machine. The command
accepts the following command line arguments:

Argument Purpose
--application XXX Indicates the name of the application to run against - must already

have been defined in the cluster using the “clbuildapp” “--build”
functionality.

--check Return 0 if all servers are running, or 10 if one or more servers for the
application are not running.

When servers for an application are not running a space separated list
of severs needed to start is shown on standard output, (see examples
below).

--newonly Start servers for the application, ignoring servers that are already
running for this application.

--force Start all servers for the application. If any servers are currently running
they are killed off first, (see examples below).

--verbose Produce additional log messages to the screen.

For example to check to see which servers need starting to service all file systems relating to
the “test01” application, please use the following command:

nbd_svrstart --application test01 --check
test01.app01vg.lv1 test.01.app02vg.maps

The output elements are in the format of “application.volume group.logical volume”.

To enforce all servers to start for an application, killing off any existing servers for the
application:

nbd_svrstart --application test01 --force --verbose

Page 199

 Linuxha.net Administrator’s Reference

26.2 Starting “enbd” Clients
Similar to the “nbd_svrstart” utility, the “/sbin/cluster/utils/nbd_clientstart” allows the current
server to check, start or restart all client daemons for enbd devices on the current machine.

It will query the remote machine to get details of the ports to run against - thus the remote
machine is expected to be up, (otherwise the client “enbd” would not be able to be run anyway).

The utility supports the following command line arguments, (very similar to the “nbd_svrstart”
utility):

Argument Purpose
--application XXX Indicates the name of the application to run against - must already

have been defined in the cluster using the “clbuildapp” “--build”
functionality.

--check Return 0 if all clients are running, or 10 if one or more clients for the
application are not running.

When clients for an application are not running a space separated list
of clients needed to start is shown on standard output, (see examples
below).

--newonly Start clients for the application, ignoring clients that are already
running for this application.

--force Start all clients for the application. If any clients are currently running
they are killed off first, (see examples below).

--verbose Produce additional log messages to the screen.
--local Treat the “remote” machine as the local machine. This is typically

used for testing running both the client and serves on the same
machine.

26.3 Stopping “nbd” or “enbd” Clients

26.4 Generating “Raidtab” Configuration Files dynamically
The “/sbin/cluster/utils/mkmdcfg” is a utility to create a “raidtab” file, which is the format of the
configuration file used by the “md” RAID software when controlling one or more devices. It is
used whenever a given package starts to generate a file containing the configuration of the
cluster. It currently takes the following command line arguments:

Argument Purpose
--application XXX Indicates the name of the application to run against - must already

have been defined in the cluster using the “clbuildapp” “--build”
functionality.

--output XXX The name of the file to generate. This should not include a path
element since the utility will always write the files to the correct
configuration directory, (see below for an example).

If this argument is not supplied it will default to the name of the
application.

--volume XXX Just put the specified logical volume in the configuration file, not all
logical volumes for the application.
CURRENTLY NOT IMPLEMENTED

--force If the specified configuration file exists then overwrite it. If the file does
exist and this argument is not specified an error will be returned
instead.

Typically this utility would be run as follows, (when an application is about to be run from the
current machine):

Page 200

 Linuxha.net Administrator’s Reference

/sbin/cluster/utils/mkmdcfg --application test01 --force

This would generate a file called “test01” in the following directory:

/cluster/control/.resource/mddata

This file looks like the following:

raiddev /dev/md0
raid-level 1
nr-raid-disks 2
nr-spare-disks 0
chunk-size 4
persistent-superblock 1
device /dev/app01vg/test
raid-disk 0
device /dev/nd0
raid-disk 1

raiddev /dev/md10
raid-level 1
nr-raid-disks 2
nr-spare-disks 0
chunk-size 4
persistent-superblock 1
device /dev/app01vg/test2
raid-disk 0
device /dev/nd10
raid-disk 1

raiddev /dev/md1
raid-level 1
nr-raid-disks 2
nr-spare-disks 0
chunk-size 4
persistent-superblock 1
device /dev/app01vg/clcst
raid-disk 0
device /dev/nd1
raid-disk 1

Page 201

 Linuxha.net Administrator’s Reference

 1 Cluster Resource Management

26.5 Application IP Address Management
It should first be noted that the cards defined for the cluster can be used for more than one
application simultaneously. This is handled by using aliasing on the card.

This is probably most of the most crucial areas of managing an application instance. This
software has been designed around offering the following two mechanisms for handling failure
of a card which is currently being used for one or more IP addresses.

There are two different methods that will be supported by the software - the first is
recommended as it offers greater resilience since much of the work is handled by the kernel.
The second offers similar functionality but occurs from user space, meaning that it works, but
tends to be much slower. However the advantage of this approach is that it can be modified by
the user to work in different ways. The two mechanisms for IP address management are:

• Channel Bonding - use of the kernel “bonding” driver to join cards together to make a
single logical card.

• IP Address take-over - by periodically checking the link status of the active card a fail-
over to an alternative card can be performed.

☞ As of 0.7.0 channel bonding for application IP address handling is not fully implemented
and thus is not yet available.

26.6 NBD / ENBD Server Management
Whenever a system is a standby for the current live environment it must run (e)NBD servers for
every file system that belongs to the application. To make this management there is a utility
called “svrstart” which can be used to start these (e)NBD server - or restart them.

To function correctly it makes use of a local directory called:

/cluster/control/.resources/pids

In this directory each server will have a separate file as follows:

Application.volumegroup.volume.nbd

The contents of the file is the process ID of what the process that is (or was last) running that
server. If the specified file does not exist then this will indicate that the service has not been run,
or has been shutdown cleanly.

On the machine currently serving the application the relevant “client-side” processes will be
running. These will also use entries in the above directory, but the format of the names will be
slightly different - the extension will be “cnbd” rather than “nbd” to denote “client”, eg:

Application.volumegroup.volume.cnbd

27 Kernel / System Software Configuration
The intention of this section is to describe the configuration of the kernel that is necessary to
ensure that the clustering software will function on a particular pair of machines. The main point
to remember is that no particular distributed is recommended - just that the kernel used is
configured in the manner specified below.

Page 202

 Linuxha.net Administrator’s Reference

27.1 General Configuration
Since the software recommends use use of the TCP version of the “Ping” function, you need to
ensure that the “echo” request is made available. This is typically found in the “/etc/inetd.conf”
file, or the “/etc/xinetd.d/echo” file if using “Xinetd” rather than “inetd”.

For “inetd” the entry must appear as follows:

echo stream tcp nowait root internal

For “xinetd” the file contents should be as follows:

service echo
{

disable = no
type = INTERNAL
id = echo-stream
socket_type = stream
protocol = tcp
user = root
wait = no

}

☞ You may need to refresh the daemon or restart the system to ensure these changes
are reflected by the “inetd” super daemon in use.

More information on use of the relevant use of the “ECHO” service can be found during the
installation instructions, starting on page .

27.2 The “Raid” and “LVM” Modules
If it recommended that the following modules be installed as part of the boot process on Linux
2.4-based environments:

• md
• raid1 / fr1

On Linux 2.6-based servers the following modules are required as a minimum for “linuxha”
functionality:

• dm_mod
• raid1 / fr1
• md

The “enbd” module is installed into the kernel as part of the application started on Linux 2.6-
based servers.

In either 2.4 or 2.6 Linux versions it does not matter whether LVM version 1 or version 2 is used,
nor whether the functionality is compiled in or loaded in directly as a module. However, if
module based functionality is chosen it should be loaded as part of the standard system start-up
process.

27.3 The “bonding” Module
Firstly the kernel must be compiled with the “bonding.o” module present. This can be found in
the following local:

Network Device Support -> Bonding driver support

Page 203

 Linuxha.net Administrator’s Reference

Once available the “clbuildapp” utility when bonding is mentioned as an option for IP availability
will check and configure the local / remote machines with information such as the following in
/etc/conf.modules:

alias bond0 bonding
alias bond1 bonding
alias bond2 bonding

Given that a typical machine will not have more than 6 network cards, three bonded devices is
usually more than enough!

Whenever the software actives a bonding device it will provide all necessary kernel module
options on the command line.

Page 204

 Linuxha.net Administrator’s Reference

28 Custom Perl Modules

28.1 The “fsmap” Module
This module is used for resource allocation queries to ascertain exactly what is allocated to a
particular application in the cluster. As of version 0.6.3 of the “linuxha” toolset it will also allow
querying of remote resources as well.

The module creates an object via the standard “new” method:

Name: new
Purpose: Returns a blessed reference of type “fsmap”.
Inputs: Hash list consisting of the following:

FILE – The name of the file to read in containing the “fsmap” for the
application. This is typically the file
“/cluster/control/.resources/fsmap/<application>”.

APPLICATION – The name of the application.

HOST [Optional] – Allows the object to scan the contents of the specified
node, rather than the local node.

Outputs: Blessed reference, or the “undef” value if an error has occurred.

Once created the object understands the following methods:

Name: get
Purpose: Returns an a list of details for the specified record:

VG – The volume group for the specified file system.

LV – The logical volume name of the specified file system.

MNT – The mount point for this file system.

TYPE – The file system type, such as “reiserfs” or “jfs”

MD – The RAID device number allocated to this file system on this host.

ND – The ENBD device allocated to this file system. These numbers start at
0 - the ENBD device name can be mapped to a device name via the
“mapdevicename” function offered by the “clutils” module.

OPTS – The file system mount options, if any.

PORT – The network port allocated on this port when running the ENBD
service for this file system.

Inputs: Hash list consisting of the following:

RECNO – The record number, (first is 0), of the details to return.
Outputs: If the record specified exists then the list of details as specified above is

returned. If no such record exists then the “undef” value is returned.

Name: get_md_list
Purpose: Returns a list of RAID devices for the application.
Inputs: None.
Outputs: A list of RAID device numbers allocated to this particular application

currently.

Name: get_md_entry
Purpose: Returns all details for a particular RAID device, given the RAID device

number.
Inputs: Hash consisting of just one mandatory element:

Page 205

 Linuxha.net Administrator’s Reference

Name: get_md_entry
MD – The device number of the RAID device to return details of.

Outputs: If the specified device exist, then a list of the following elements, (as
described for the “get” method previously).

VG, LV, MNT, TYPE, MD, ND, OPTS, PORT

Name: reread
Purpose: Rescans the resources allocated to the particular application.

☞ Currently this is only supported when the fsmap details are being
queried for the local host.

Inputs: None.
Outputs: Undef – An error occurred whilst scanning.

0 – Reread information successfully.

Name: count
Purpose: Returns a count of the number of file system allocated for this application.
Inputs: None.
Outputs: Count – integer 0 or above.

Name: nbd_belongs
Purpose: Returns the RAID device number when given the ENBD device number.
Inputs: NAME – The device name of the nbd device, such as “a”, or “ba”.
Outputs: The RAID device number for this ENBD device, or -1 if the specified ENBD

device entry can not be found.

Page 206

 Linuxha.net Administrator’s Reference

Name: get_fs_match
Purpose: Returns the record number of the information for the specified file system,

given the mount point.
Inputs: Hash with the following single mandatory argument:

FILESYSTEM – Mount point to return details of.
Outputs: >=0 – the record number of the matched entry.

-1 – indication that the file system is not recorded for the application.

28.2 The “clutils” Module
This module contains a large number of routines that are used by many of the main scripts used
by the “linuxha” application.

Name:
Purpose:
Inputs:
Outputs:

28.3 The “clbonding” Module
This module contains a series of routines that are used by various cluster tools to check, create,
remove and monitor the state of a bonding configuration. This is a standard module but all
routines must be imported explicitly.

Name: bonding_check_params
Purpose: Checks to see if the list of values, (see format below), are valid to be used to

be passed to form a new bonding device.
Inputs: String - a string containing the “param:value” settings, white space

separated.
Outputs: An array containing either:

(0,”OK”) - the parameters passed are acceptable, or;

(1,”err”,[...]) - one or more parameters are not recognised or have
invalid values.

Name: bonding_get_defaults
Purpose: Returns a string of the defaults to use for bonding parameters (such as the

“mode”) if the application does not define any.
Inputs: None.
Outputs: String - containing the default values - as understood by the

bonding_check_params routine.

Name: bonding_create
Purpose: This will create a new device and return the name of it - such as “bond2”.

This is the network interface that has been created, (or re-created if it
already existed) that has been assigned the IP address for the package.

The checks include checking to ensure that no routes are currently defined
against the cards, (which insures they are not currently in use).

Inputs: Hash with the following mandatory elements:

IP - The IP address to assign to the new interface.

APPLICATION - The name of the application, (which is used to load the
bonding module with a unique name).

Page 207

 Linuxha.net Administrator’s Reference

Name: bonding_create
INTERFACES - A comma-separated list of exactly two interfaces to use as
the bonding network configuration.

FLAGS - A series of white space separated “attribute:value” pairs which
define the type of bonding interface to create. It is assumed they these have
already been validated via the “bonding_check_params” function.

The following is optional:

NETMASK - The Netmask to apply to the new interface that has been
created.

Outputs: If an interface has been created successfully then the return list will be:

(“OK”,”interfacename”)

If an error has occurred, then the following is returned instead:

(“ERROR”,”Error message”)

Name: bonding_get_interfaces
Purpose: Returns a list of two interfaces that are not currently in use - this is defined

as them having no entries in the routing table. These are then used as
candidates to bonding device creation (probably).

Inputs: String - a comma-separated list of interface names to check.
Outputs: ([eth0],[eth1]) - list containing two available interfaces - empty if none

are available, or 1 element long is only one is available.

Page 208

 Linuxha.net Administrator’s Reference

Name: bonding_destroy
Purpose: Removes the specified bonded interface, given just the IP address hosted

and the application name using it.

It will also ensure the module in question is unloaded (if possible), and
ensure that any interfaces slaved have there IP address set to 0.0.0.0
allowing them to be re-used for other bonded network interfaces when
necessary.

Inputs: Hash with two mandatory arguments:

APPLICATION - The name of the application with the bonded interface.

IP - The IP address associated with the bonded interface.
Outputs: (“ERROR”,”message”) - unable to removed the bonded interface -

“message” is text explanation why.

(“OK”,”interface”) - the bonded interface “interface” has been
removed successfully.

Name: bonding_get_info
Purpose: Returns information about the specified bonded device as a list.
Inputs: Hash with one mandatory arguments:

INTERFACE - The name of the bonded interface - such as “bond0”.
Outputs: (“ERROR”,”message”) - unable to find details of the specified bonded

interface

(“mode”,”active”,”int1”,”f1”,”int2”,”f2”) where;

mode - text mode of bonded interface.

active - the currently active interface (or “both”).

int1 - the ethernet device of the first interface.

f1 - the link failure count of the first device.

int2 - the ethernet device of the second interface.

f2 - the link failure count of the second device.

Page 209

 Linuxha.net Administrator’s Reference

29 Application Directories
This is a short section that describes the extensions used by the software, the directory
structure of the installed code, and any default log files that are generated, and how they should
be managed. It should be noted that this product is still under heavy development and this
information is subject to change for later versions. This document covers release 0.5.0 of the
“linuxha” products, (and the associated “linuxhatools”) only.

29.1 Non-Standard Perl Packages
The table below lists the required Perl packages that must be installed before the “linuxha”
software can be used. All these packages are made available as part of the “linuxhatools”
package, installation of which is covered on page .

Name Author(s) Description
XML-Parser-2.31 Provides XML::Parser module for handling XML files (which

are used for all configuration information)
expat-1.95.6 Provides the low level C library used for the XML-Parser

module.
Time-HiRes-1.43 Provides the Time::HiRes module which is used for

scheduling purposes when the current time to fractions of a
second is required.

Crypt-CBC-2.08 The package used to handle the encryption of variable
length data into blocks.

Net-ext-1.011 The collection of modules to make Socket-based servers
easier to author.

Crypt-Blowfish-2.09 The Blowfish encryption algorithm used for the encryption.

Directories used by the product

Directory Contents
/etc/cluster Configuration files for packages and the definition of the

cluster.
/etc/cluster/<package> Per application configuration files for the cluster.
/etc/cluster/<package>/flags Directory used for flag files for the “Lems” flag_check

module.
/usr/local/cluster
/usr/local/cluster/lib
/usr/local/cluster/lib/perl This directory and any subsequent sub directories are used

to contain perl modules that are not “installed” into the
standard Perl installation - XML::Simple.pm for example.

/sbin/cluster Directory containing standard binaries to use with the
clustering software.

/sbin/cluster/utils Utility scripts some of which can be used on the command
line, but typically utilised by the programs in the parent
directory.

/usr/src/cluster This directory contains several sub-directories that are
installed when the prerequiste “linuxhatools” package is
installed, (each exampled below).

/usr/src/cluster/raid Patched version of the “raidtools” utility set used by linuxha.
This directory is used to compile and install and is left as a
reference of the source after the installation is complete.

/usr/src/cluster/perl Contains copies of the Perl modules that are installed for
“linuxhatools” – as listed previously.

/usr/src/cluster/nbd Contains patched version of the ENBD product that is
required for “linuxha”. Again these tools are compiled and
installed when the “linuxhatools” package is installed.

/usr/src/cluster/lvm2 Patched version of the LVM2 toolset that linuxha uses. Only
difference is that device scanning omits RAID and ENBD
devices, since this is known to cause deadlocks on
occasion.

Page 210

 Linuxha.net Administrator’s Reference

/usr/src/cluster/doc Basic README and INSTALL instructions, will contain
other documents in later releases.

/usr/src/cluster/expat The “Expat” tool-set that is used for the XML::Simple parser
module that “linuxha” uses.

Perl Modules Used

Module Purpose
Digest::MD5 Used to checksum configuration files to ensure they are the same on

both nodes in the cluster.

Non-Standard Unix Commands Required

Name Purpose
Md5sum Return the MD5 checksum of a local file.
Vgcreate Create an LVM Volume Group
Nbd-client Create a nbd Client connection
Nbd-server Serve a local block device as an nbd resource
Enbd-client
Enbd-server
Raidstop
Raidstart
Raidsetfaulty
Raidhotadd

Page 211

 Linuxha.net Administrator’s Reference

 A. Understanding “ENBD”

 I. Introduction
The purpose of this appendix is to describe who I believe “enbd” works, and the changes
introduced against the standard features to make it more compatible with the goals and
functionality of the high availability software.

This section is based entirely on my own understanding of “enbd” and thus is likely to be subject
to change as I learn more about how “enbd” actually works!

 II. An “Enbd” client / server Example Walkthrough
Like “nbd”, “enbd” obviously requires that the server is started before the client on a port
specified on the command line. Although the server listens on the specified port, this is not the
whole story, as the scenario below demonstrates.

Typically to start a server process the following command line would be used:

enbd-server -P 9921 -E /dev/app01vg/test2 -b 1024 -F 9950 -i hello

Note: This command line is different than the standard enbd-2.4.30 software would parse, as
explained in a later sub-section.

This command will indicate that the block device “/dev/app01vg/test2” will be served by “enbd”
on port “9921”. The “-b” indicates the block size, 1024 being suitable for standard Ethernet
networks, (i.e. smaller than the MTU to prevent loss of performance due to fragmentation).

Finally the “-F” indicates that the software should examine ports from 9950 upwards when
looking for ports to dynamically allocate to the client connection requests. This is followed by the
“-i” flag which indicates an identity to be associated with this request to ensure only clients with
a matching identity can connect.

On running this command line the following will be shown on the terminal:

enbd-server 218: server (-2) locked /var/state/nbd/server-
hello.client_ips
enbd-server 218: server (-2) pinged service nbd-cstatd at
172.16.235.101:5051
enbd-server 218: with news "notice server-start 9921 127.0.0.1
172.16.235.100 172.16.235.110
quit
"
enbd-server 218: server (-2) unlocked /var/state/nbd/server-
hello.client_ips
enbd-server 218: server (-2) set new signal handlers for master
server 218

Once this command has been run the specified process is now running in the background. A
check with netstat indicates it is listening on the expected port:

netstat -an|grep 9921
tcp 0 0 0.0.0.0:9921 0.0.0.0:* LISTEN

At this point the client is able to attempt a connection. To do this the following command line is
used on the client machine:

enbd-client -S servera -P 9921 -n 4 -i hello -D /dev/ndb

Page 212

 Linuxha.net Administrator’s Reference

In this instance the server to connect to is “servera”, and the port the “enbd” service is listening
on is “9921”. The “-n” is the number of channels to use - 4 is the typical recommendation. Finally
the “-i” option is used to identify the client with the actually “enbd” device given on the end of the
command line.

As soon as this command is entered output will appear on both the client and the server as they
attempt to negotiate the characteristics of the connection. The following characteristics are
considered:

• The recommended block size - The value chosen will be the larger of the client / server
values. If the “-b” option is not specified when starting the client or the server it defaults to
1024.

• The pulse interval - how often the client attempts to contact the client to see if it is still
active. If the server is unable to contact the client I believe the client will go dormant waiting
for a connection to respond?

• The number of channels - The number of channels indicates how many processes are used
on both the client and server to service this connection. Four are typically used since this
improves concurrency when dealing with multiple requests.

Once the connection has been established the device file specifed on the command line on the
client can be used as expected, i.e.:

mount /dev/ndb /tmpmnt

 III. Stopping the Client
To stop the client, then the following series of actions are recommended.

The first step is to stop using the device. This is achieved by un-mounting the file system:

umount /tmpmnt2

It should be noted that un-mounting the file system might take a few seconds, since the flushing
of buffers requires all communication to the other server to be validated and completed.

Once the file system has been unmounted, issue an additional “sync” command just in case:

sync

Finally to stop the client issue the following command:

kill PID

The process ID to choose is the one that is serving the resource and has several children - this
is the process that has a Parent Process ID of 1. Several seconds after killing it the client and
server resources will be de-allocated on both sides for this connection.

Of course this will still leave the server process ready to serve another connection to this
resource. Stopping the server resource will cause all client resources to be terminated as well.

 IV. Understanding Device Resource Allocation
One of the most important points to understand when using “enbd” is that each server/client
connection must use multiple “/dev/nd” devices on the client. The configuration used as part of
this software is configured for the kernel module, client and server to support up to 64 devices -
each having four paths for availability.

Thus when you connect a client using the device “/dev/nda”, actually the following four devices
will actually be used, (each with a separate client/server process):

Page 213

 Linuxha.net Administrator’s Reference

/dev/nda
/dev/nda1
/dev/nda2
/dev/nda3

When more than 26 devices are available for format is as follows:

Devices 1-26 are “/dev/nd[a-z]”, whilst devices “27-52” are “/dev/ndb[a-z]”. The next set of
devices, 53-78” are “/dev/ndc[a-z]”. Thus when using the configuration supplied here the
devices available range from “/dev/nda” through to “/dev/ndcl”, (1 through 64).

Unfortunately the standard “MAKEDEV” script supplied with “enbd” is not capable of generating
the required block devices for this configuration. To alleviate this problem the patched version
includes a “MAKEDEV.pl” which is able to generate device files necessary to this configuration.

To generate all necessary device files, change to the directory where the patched version of the
software is installed, (i.e. “/usr/local/src/enbd-2.4.30-patched”), and run the following command
to create all the devices:

./MAKEDEV.pl --device 0 --range 64 -v

Note: The “range” argument can be removed to create a single device. The device numbers
go from “0” through to 63.

If any of the the files already exist an error will be given and the program abort.

Page 214

 Linuxha.net Administrator’s Reference

 B. Using Raid Modules for Data Replication

 I. Introduction
The purpose of this short appendix is to describe in detail the use of the current raid modules
under Linux 2.4 to support the data replication, which is used in this software along with “enbd”
or “nbd” as mentioned to replicate changes to a backup machine.

RAID functionality has been available for Linux for several years - even so there is still room for
improvement, as explained in detail throughout this section.

 II. Basic Raid Operations
Before describing the actions used by the software, the basic available actions for a RAID array
will be explained.

 III. Understanding /proc/mdstat
Use of this status file is critical for the application software, since it determines the status of
every raid device currently in use on the system. When all raid devices are operating normally
the contents will look similar to the following:

Personalities : [raid1]
read_ahead 1024 sectors
md10 : active raid1 lvmb[0] ndk[1]
 53184 blocks [2/2] [UU]

md0 : active raid1 lvma[0] nda[1]
 20416 blocks [2/2] [UU]

unused devices: <none>

In the above example there are two RAID devices currently in use on the server, both of which
are functioning normally. The first two lines describe the available “personalities” - either “raid1”
or “fr1” must be included here for the clustering software to function.

After the first two lines each device is then allocated two or more lines. Following the device
name the status of the device is listed, which is typically “active”. Following is the personality of
this device, which will be “raid1” or “fr1” for clustered devices, the actual device names, (without
the “/dev” components are shown).

The actual names of the devices are simply referred to as “lvma” for logical volumes. The
numbers in square brackets indicate the device number in the array.

The second line indicates the size of the array, (each block is 1Kb), following by the devices in
the array and usable devices, (always “[2/2]” when things are synchronised). The final set of
square brackets use a single character for each device, where “U” indicates up to date, whilst
“_” means not synchronised.

Page 215

 Linuxha.net Administrator’s Reference

The following example shows the contents of the file when one of the RAID1 devices is
undergoing synchronisation:

Personalities : [raid1]
read_ahead 1024 sectors
md10 : active raid1 lvmb[2] ndk[1]
 53184 blocks [2/1] [_U]
 [===============>.....] recovery = 76.9% (41688/53184) finish=0.3min speed=592K/sec
md0 : active raid1 lvma[0] nda[1]
 20416 blocks [2/2] [UU]

When a device is being resynchronised the contents of /proc/mdstat show how are through the
resynchronisation the software is, both as a percentage and as a number of blocks
synchronized, compared to the total block count.

Interestingly the average rate of synchronisation and the estimated completion time are also
recorded. The estimated completion time is accurate to 1/10th of a minute, (6 seconds).

 IV. Synchronising Multiple Devices
Given that most applications will consist of more than a single file system, there may be
occasions when more than one RAID device needs to be synchronised. This is the case, for
example, when the application is being built, (via “clbuildapp --sync”), or if a secondary node for
the application comes back into the cluster.

In such cases the “raidhotadd” command will be run against several arrays simultaneously. In
such situations you will notice that the /proc/mdstat may look similar to the following:

Personalities : [raid1]
read_ahead 1024 sectors
md1 : active raid1 lvmc[2] ndb[1]
 8128 blocks [2/1] [_U]

md10 : active raid1 lvmb[2] ndk[1]
 53184 blocks [2/1] [_U]

md0 : active raid1 lvma[2] nda[1]
 20416 blocks [2/1] [_U]
 [===================>.] recovery = 95.0% (20416/20416) finish=0.0min speed=2268K/sec
unused devices: <none>

The key point here is that despite all three devices being active with faulty mirrors the
resynchronisation code, (handled via the “raid1d” process will only synchronise one device at a
time - all other devices will be handled once the current one is complete.

Thus the ordering of synchronisation is based on the order of the “raidhotadd” command, which
in turn, is based on the contents of the “fsmap” for the application. This in turn is based on the
order the file systems are mounted when the application is built. This fact should be borne in
mind when building the application and leads to the following points:

Hint: if you wish to secure certain files systems as soon as possible, mount them as soon as
possible.

Page 216

 Linuxha.net Administrator’s Reference

 C. Setting up SSH

 I. Introduction
One of the requirements of this clustering software is to ensure that it is possible for both
servers to communicate to one another over all communication channels. Usually there will be
at least two such channels, as the diagram below demonstrates:

Notice that in the above (common) example, the hosts typically communicate using the
replication network, but they can also communicate via the other interfaces/IP addresses
defined for the application/topology.

The steps below allow both servers to use the “ssh” and “scp” commands between one another
as “root” without prompting for a password or pass phrase. This is absolutely essential for the
clustering software to work - and if these or similar steps (if you have a preferred alternative
method for ssh configuration), are not following the cluster software will not build correctly.

All steps below should be run as “root” on each machine in the cluster.

 II. Step 1: Define Public/Private Key Pairs
The first step is to define a public/private key pair for each machine in the cluster. This is as
simple as running the following command on each server in turn:

ssh-keygen -t rsa -b 1024

When run you will then see the following output (or something very similar to the following):

Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):

In this instance simply hit <RETURN> to accept the default file location. This will be followed by
the following output:

Created directory '/root/.ssh'.
Enter passphrase (empty for no passphrase):

Page 217

Public Network

Data Replication Network
ServerA ServerB

Client Client Client Client

 Linuxha.net Administrator’s Reference

Again simply hit <RETURN> and then again when asked to repeat the key phrase. You will
then be shown the public portion of the key that has been generated.

Now repeat this step on the other node in the cluster before continuing.

 III. Defining Machine Definitions
To ensure that this host is known to both itself and the other node in the cluster each machine in
turn must be connected to. To attach to the local machine, run the following command:

ssh localhost ls

If this is the first time this has been tried output similar to the following will appear:

The authenticity of host 'localhost (127.0.0.1)' can't be established.
RSA key fingerprint is 53:86:82:ea:80:a5:cd:26:14:5e:46:07:b4:54:8c:10.
Are you sure you want to continue connecting (yes/no)?

Enter “yes” it this prompt and then enter the current local “root” password to finally run the
command.

Now we need to perform the same steps for the other node in the cluster, for example “serverb”:

ssh serverb ls

Again enter “yes” and then the current “root” password for that server.

Now repeat this step on the other node in the cluster, obviously using the name of the first node
when running the final “ssh” command just given.

 IV. Define SSH client authorization
The final step is to ensure that each host allows one another (and itself again!) to use ssh
without requiring a password. This is achieved by copying the public key part of the
public/private key pair to login by providing the correct pass phrase defined for this particular
host.

Since the pass phrase entered above was empty this will in affect allow us to log in without
stopping to provide input - absolutely required for running the software in the cluster
environment!

To do this list the public key of the local machine, run the following commands:

cd ~/.ssh
cp id_rsa.pub authorized_keys

Now this file should be edited to include the contents of the “id_rsa.pub” key copied from the
other node. Once completed the file will look similar to the following file, containing just two long
lines of output:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAlj9iflPPIF4Y9ALe9QHfSQiX01lI44RPbLP/oor4WRguyv/Rwp
EQE3aBsvQy551NLDVoBXGx54UBD/HLtW81ckKUefwQm4txqTrNRFzTyDzWr71MXKx/7BO4ro0Nt3SPz2WTSeJC
Etvv5DC0LxkJXnq1BZRoeGxBgiLKYGndsbc= root@servera
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAuEcNJrcOzEabCZnVAoOEf4/+sqZpEHnv2IgR0GJYeVxI91lCJN
lwjgGbEahz9vSHSYBlGtRHXMz/oHVBqCPfP2TKiQieR+S2YncwdkDOR5V6Q6B8ILKuzJSD24pLFo7aZpg2pzQ4
YH5TbWwAtbs6tqaldJc+cVySZi2Ty8ROxRs= root@serverb

This step should now be repeated on the other node to ensure “ssh” works in a similar way for
that host as well.

This should complete the basic set up to allow both hosts to use the “ssh” and associated
programs without requiring a pass phrase or password to be entered each time.

Page 218

 Linuxha.net Administrator’s Reference

If you need to allow other servers to access these hosts in a similar way simply add their public
keys for the user in question to the “authorized_keys” file on each host as shown above.

At this point it is worth checking the configuration attempting to “ssh” to all configured
addresses. For example, simply use the following command again from “servera” to “serverb”:

servera# ssh serverb ls

Please remember that if multiple IP addresses are available on each host the steps should be
repeated for all addresses on all hosts. Although time consuming it only has to be done once.

☞ If the above steps do not work double check the “authorized_keys” file on each host – a
common mistake is to cut and paste the lines – this might introduce end-of-line characters and
each entry needs to be on a single line.

Page 219

 Linuxha.net Administrator’s Reference

 D. Guidelines for Editing XML Files
The purpose of this short appendix is to give some straightforward rules that should be followed
when editing the XML files used for the “linuxha” product. This information is only useful to
administrators who are not currently aware of the syntax rules that govern the use of XML files.

<more on characters, comments, etc>

Page 220

 Linuxha.net Administrator’s Reference

 E. Sample “Apache” Application Configuration

 F. Introduction
The purpose of this section is to describe the process of creating the environment ready to use
the “clbuildapp” routines to create a package that will be used to start a sample “apache”
application in the cluster.

 G. Building the Volume Group
The steps here assume that you are using “LVM version 2” (device mapper). If you are using
LVM version 1 instead the commands used will be slightly different. The differences between
the two command sets will be shown.

Note: All commands here should be carried out on the first host in the cluster - any
commands that need to be run on the other host will be specifically mentioned.

The first step is checking to see if you have a spare “physical” volume which you can assign to
the volume manager. On the sample server we have configured the “sda” drive, (the first SCSI
device) as follows:

fdisk -l /dev/sda

Disk /dev/sda: 4194 MB, 4194892800 bytes
255 heads, 63 sectors/track, 510 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 1 262 2104483+ 83 Linux
/dev/sda2 263 279 136552+ 82 Linux swap
/dev/sda3 280 510 1855507+ 5 Extended
/dev/sda5 280 305 208813+ 8e Linux LVM
/dev/sda6 306 331 208813+ 8e Linux LVM

If this case the first drive is used to boot the system, but also provides two partitions “sda5” and
“sda6” which can be used as “physical” devices in LVM. You can use complete drives though if
you have them spare, but this is not strictly necessary.

We wish to create a volume group called “app01vg”, and to do this we must first indicate that
“sda5” and “sda6” are to be used as “physical devices” by the volume manager. This is done
using the following command:

pvcreate /dev/sda5
 No physical volume label read from /dev/sda5
 Physical volume "/dev/sda5" successfully created
pvcreate /dev/sda6
 No physical volume label read from /dev/sda6
 Physical volume "/dev/sda6" successfully created

Page 221

 Linuxha.net Administrator’s Reference

Once the devices have been created the volume group can be created. Here we just use a
single “physical volume” - though of course others can be added now, or at a later date:

vgcreate app01vg /dev/sda5
 Volume group "app01vg" successfully created

Now the “logical volumes” (one per file system) can be created. This is just as straightforward.
We give them names of “admin”, “logs” and “docs” in this instance:

lvcreate -n admin -L 20 app01vg

If this is the first time you have used LVM and are using LVM version 2, you might get the
following error:

 /dev/mapper/control: open failed: No such file or directory
 Is device-mapper driver missing from kernel?
 Failed to activate new LV.

This occurs because there is an entry missing from /dev. To ensure that this is created the
“device-mapper” distribution comes with a file called “devmap_mknod.sh” under the scripts
directory. This must be run to create the required “control” device on each server in the cluster:

/tmp/device-mapper.1.00.07/scripts/devmap_mknod.sh

Of course you will need to change the path to that relevant to where you unpacked the device
mapper if you installed it manually. You will not need to re-run the previous command since it
created the logical volume, just not activated it. We carry on to create the other logical volumes,
each also 20Mb in size:

lvcreate -n docs -L 20 app01vg
 Logical volume "docs" created
lvcreate -n logs -L 20 app01vg
 Logical volume "logs" created

If you did get the activation error above then we need to active the logical volume manually:

lvchange -a y /dev/app01vg/admin

All the above commands were for LVM v2 - LVM v1 commands are the same apart from the
“lvcreate” commands - here we need to replace the “app01vg” at the end of the line with
“/dev/app01vg” in each case. For example:

lvcreate -n admin -L 20 /dev/app01vg

Now the logical volumes have been created we can generate file systems on them. To the
operating system each logical volume appears to be like a complete disk, and so we use the
standard commands to create the file system, just specifying the name of the logical volume
instead of the name of a disk partition. Due to the size of the logical volumes, (20Mb each), we
have chosen to use “Jfs” as the file system type since Reiserfs does not appear to work well on
such small file systems:

mkfs -t jfs /dev/app01vg/admin
mkfs -t jfs /dev/app01vg/docs
mkfs -t jfs /dev/app01vg/logs

You will need to answer “Y” for each command to confirm the action. If these commands fail you
will need to download the JFS file system and user space tools from the IBM web site:

http://www-124.ibm.com/developerworks/oss/jfs/

This website includes information on how to install the file system and user space tools.

Once the file systems have been created to create the mount points we expect them to use:

mkdir -p /apache /apache/docs /apache/admin /apache/logs

Page 222

http://www-124.ibm.com/developerworks/oss/jfs/

 Linuxha.net Administrator’s Reference

Now we finally mount these file systems on the first machine ready to install the software that
will be clustered:

mount /dev/app01vg/admin /apache/admin/
mount /dev/app01vg/docs /apache/docs
mount /dev/app01vg/logs /apache/logs

Now the file systems are mounted and ready to use. If you are using LVM v2 you will notice that
the devices you used to mount the file systems in the above commands ar not the devices
shown via “df” - this is expected:

Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 2104408 1245564 858844 60% /
/dev/mapper/app01vg-admin
 19248 136 19112 1% /apache/admin
/dev/mapper/app01vg-docs
 19248 136 19112 1% /apache/docs
/dev/mapper/app01vg-logs
 19248 136 19112 1% /apache/logs

Finally we must actually create the volume group on the other node - so run the following
commands on the other node in the cluster:

pvcreate /dev/sda5
vgcreate app01vg /dev/sda5

No other commands are necessary - the process of building the application described starting
on page will create the logical volumes and mount points on the other node if necessary.

For more information on the flags that can be used with the “lvcreate”, “pvcreate” and “vgcreate”
see the appropriate manual pages.

 H. Using the Sample files
Once you have mounted the file systems you will be able to copy the sample files that come
with the “linuxha” package over to a suitable directory. Use the following commands to create a
configuration directory on the clustered file system, (which was mounted on the first node in the
previous section).

We also take this opportunity to create a directory for the administration scripts:

mkdirr /apache/admin/conf /apache/admin/scripts
chmod 755 /apache/admin/conf /apache/admin/scripts

Now the configuration files can be copied using the following command:

cp /etc/cluster/apache/conf/* /apache/admin/conf
chmod 444 /apache/admin/conf/*

You will need to change the “httpd.conf” to provide details of the correct locations of where files,
(such as the home page and the logs) will be stored. Below are the two lines that I changed to
get my exampe working:

httpd.conf:ServerRoot "/apache"
httpd.conf:DocumentRoot "/apache/docs/htdocs"

httpd.conf:<Directory "/apache/docs/htdocs"> (for document root)

<IfModule mod_mime.c>
 TypesConfig /apache/admin/conf/mime.types
</IfModule>

<IfModule mod_mime_magic.c>
 MIMEMagicFile /apache/admin/conf/magic
</IfModule>

ErrorLog /apache/logs/error_log

Page 223

 Linuxha.net Administrator’s Reference

CustomLog /apache/logs/access_log common

mod_alias.c settings...
<IfModule mod_alias.c>
 Alias /icons/ "/apache/docs/icons/"

 <Directory "/apache/docs/icons">
 Options Indexes MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
 </Directory>

 ScriptAlias /cgi-bin/ "/apache/docs/cgi-bin/"
 <Directory "/apache/docs/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
 </Directory>
</IfModule>

Please note that the changes that were made enabled a simple web server session to be
validated in the cluster. It is likely that a full production system would need to further changes to
the configuration files in use.

Page 224

	1 Preface
	1.1 Introduction
	1.2 Document Organisation
	1.3 Intended Audience
	1.4 Conventions
	1.5 Request for Feedback
	1.6 Software Versions Covered
	1.7 Understanding Linuxha.net Releases

	2 Principals of High Availability
	2.1 Redundancy
	2.2 Availability
	2.3 Client / Server Architecture
	2.4 Linuxha.net Resource Limits

	3 Managing Data Redundancy
	3.1 Shared Storage Architecture
	3.2 Replicated Storage Architecture

	4 Data Replication with Linuxha.net
	4.1 Choosing the Network Block Device
	4.2 Using DRBD on the Command Line
	4.3 Scenarios Requiring Resynchronisation
	4.4 File System Support

	5 Linuxha.net Solution Architecture
	5.1 Definitions of Terms
	5.2 Application Storage Management
	5.3 Managing Cluster Consistency Status Information
	5.3.1 Handling Specific Limitations

	5.4 Cluster Status Daemon
	5.5 Cluster Lock Daemon
	5.6 Cluster Network Daemon
	5.7 Application Monitoring with “Lems”
	5.7.1 System Monitors
	5.7.2 Application Monitors

	5.8 Cluster Utilities
	5.9 Third Party Software

	6 Installing Linuxha.net
	6.1 Hardware requirements
	6.2 Typical Hardware Configurations
	6.2.1 Configuration 1 - No redundancy
	6.2.2 Configuration 2 - Basic network redundancy
	6.2.3 Configuration 3 - Local Storage Redundancy
	6.2.4 Configuration 4 - Complete network redundancy (Multi-pathing)
	6.2.5 Configuration 5 - Multiple Public Networks
	6.2.6 Specific Hardware Concerns
	6.2.7 Hardware Configuration Conclusions

	6.3 Environment Configuration
	6.4 Kernel Configuration
	6.5 Prerequisite Software
	6.5.1 Installing Tarp Package Management Software

	6.6 Installation of the “linuxha” package
	6.6.1 Manual Check for LVM Support
	6.6.2 Update the Superuser's PATH

	6.7 Installation differences between 2.4 and 2.6 kernels
	6.8 Upgrading from previous Installations

	7 Building the Cluster Configuration
	7.1 Detailed Example Cluster Configuration
	7.2 Initial Cluster Build
	7.2.1 Field-by-Field explanation of “clconf.xml”
	7.2.2 Heartbeat Considerations
	7.2.3 Cluster Network and Locking Support
	7.2.4 Building the Cluster
	7.2.5 Creating “resource” flags
	7.2.6 Running the “clbuild” Utility

	8 Building the sample “Apache” package
	8.1 Creating the Application Configuration File
	8.2 Network Availability Considerations
	8.2.1 Bonding verses Fail-over network Types
	8.2.2 Supported Bonding Modes
	8.2.3 Link-level checking verses IP level checking
	8.2.4 Sharing Multiple IP addresses

	8.3 Checking the Application Configuration
	8.4 Validation / Build of Volume Groups
	8.5 Allocating Application Resources
	8.6 Synchronising the Cluster File systems
	8.6.1 Managing Application File systems “outside” the cluster

	8.7 Understanding Application Resources

	9 Application Configuration and Monitoring
	9.1 Start/Stop Script Interface Requirements
	9.2 Providing a “Lems” Monitor for the application
	9.3 Sample Process Monitor Implementation

	10 Starting the Cluster
	10.1 Forming a Cluster using “cldaemon”
	10.1.1 When to use force to form a cluster

	10.2 How a Cluster is Joined
	10.3 Forming a Cluster using “clform”
	10.4 Forming a Cluster on machine boot

	11 Managing Applications in the Cluster
	11.1 Starting Applications with “clstartapp”
	11.2 Some typical Error Conditions when Starting Applications
	11.3 Checking Application Status
	11.3.1 The “File Systems” information
	11.3.2 The “Process Monitors” information
	11.3.3 The “General Monitors” information

	11.4 Stopping Applications
	11.5 Starting Applications (the easy way)
	11.6 Managing application Monitoring

	12 Application Removal
	13 Stopping the Cluster
	13.1 Stopping the Cluster Manually
	13.2 Stopping the Cluster Automatically
	13.3 Halting Individual Nodes
	13.4 Adding Nodes to a Running Cluster

	14 Adding further Applications
	14.1 Purpose of this section
	14.2 Application Storage Requirements
	14.3 Application Configuration for cluster
	14.4 Start and Stop scripts for “Samba” Application
	14.5 User Environment
	14.6 Cluster Configuration
	14.7 Checking the new Application Configuration
	14.8 Allocating Application Resources
	14.9 Limitations with Samba Sample Application
	14.10 Adding Applications: Common Problems
	14.10.1 Mismatch Security Settings
	14.10.2 Missing Mount Points

	15 System Administrator Responsibilites
	16 Managing Application Monitoring
	16.1 Stopping Monitoring
	16.2 Resuming Monitoring
	16.3 Pausing a Module
	16.4 Resuming a Module
	16.5 Removing a Monitor
	16.6 Adding a new Monitor
	16.7 Monitor Specific Communication
	16.8 Log Management
	16.8.1 Handling of Compressed Logs

	16.9 Stopping and Starting the Lems Daemon Manually

	17 Managing Cluster Daemons with “cldaemonctl”
	17.1 Log File management
	17.1.1 Application Specific Logs
	17.1.2 Clstartapp and Clhaltapp specific Logs
	17.1.3 Cluster daemon log files

	17.2 Resetting Application Fail-over Capability
	17.3 Stopping Application Fail-over Capability
	17.4 Checking Cluster Status in a Script
	17.5 Starting and Stopping Applications

	18 Managing Configured Applications
	18.1 Adding new file systems
	18.1.1 On-line Addition of file systems
	18.1.2 Off-line Addition of file systems

	18.2 Removing existing file systems
	18.2.1 On-line Removal of File systems
	18.2.2 Off-line Removal of File systems

	18.3 Changing existing file systems
	18.3.1 On-line file system expansion
	18.3.2 Off-line file system expansion
	18.3.3 Off-line File system Reduction

	18.4 Modification of application parameters

	19 Easier Application Management
	19.1 Differences During Application Build
	19.2 Using the “clrunapp” Utility
	19.3 Using the “clform” Utility
	19.3.1 Joining an Existing Cluster

	20 Performing Software Upgrades
	20.1 Background Information
	20.2 Upgrading Clustered Applications
	20.3 Upgrading Linuxha.net Software
	20.4 Updating Operating System Software

	21 Handling Failure Scenarios
	21.1 Introduction
	21.2 Common Failure Scenarios
	21.2.1 Loss of a Network Link
	21.2.2 Handling IP-level failures
	21.2.3 Failure of Data Replication Network Connection
	21.2.4 Application Software Failure
	21.2.5 Stopping Fail-over (from application monitoring)
	21.2.6 Process Monitor Administration
	21.2.7 Node failure (Hardware or Operating System)

	21.3 Managing Node Failure Scenarios
	21.3.1 Checking Application Status
	21.3.2 Recovering Application Data Availability

	21.4 Loss of Server Main IP Interface
	21.5 Loss of Cluster Daemon
	21.6 Understanding Network Partitioning
	21.7 Data Consistency Issues

	22 Implementation details of “clstartapp” & “clhaltapp”
	22.1 Supported Command Line Arguments
	22.2 Default Argument Settings
	22.3 Ascertaining Cluster Status
	22.4 Starting cluster packages - Condition Decisions
	22.4.1 Actions on a Clean Start-up
	22.4.2 Actions on a Clean Shutdown
	22.4.3 Actions on a non-Clean Shutdown (no remote available)
	22.4.4 The “getmdlist” Utility

	23 Implementation Details of “clrunapp”
	23.1 Introduction

	24 Understanding the “Lems” Daemon
	24.1 Introduction
	24.2 The Lems Configuration File
	24.3 The Lems Action List
	24.3.1 Using the “RUNCMD” Action

	24.4 Standard “Lems” Monitors
	24.4.1 The “Flag_check” Module
	24.4.2 The “Ip_module” Module
	24.4.3 The “Link_module” Module
	24.4.4 The “Ip_move_interface” Module
	24.4.5 The “capacity_check” Module
	24.4.6 The “swap_check” Module
	24.4.7 The “Fsmon” Module
	24.4.8 The “procmon” Modules

	24.5 The “Lems” Server Messages
	24.6 The “Lems” Module Object Method Requirements
	24.6.1 Object Environment

	24.7 The “Lems” Program Execution Requirements
	24.8 Writing a Sample Lems Monitor
	24.8.1 The “new” method
	24.8.2 The “check” Method
	24.8.3 The “stat” Method

	25 Understanding the Cluster Management Daemon
	25.1 Introduction
	25.2 How the Cluster Daemon Interacts with an Application
	25.3 Forming the Cluster - Cluster Daemon Initialisation
	25.4 Protocol and Messages

	26 Cluster Utility Scripts
	26.1 Starting “nbd” or “enbd” Servers
	26.2 Starting “enbd” Clients
	26.3 Stopping “nbd” or “enbd” Clients
	26.4 Generating “Raidtab” Configuration Files dynamically
	26.5 Application IP Address Management
	26.6 NBD / ENBD Server Management

	27 Kernel / System Software Configuration
	27.1 General Configuration
	27.2 The “Raid” and “LVM” Modules
	27.3 The “bonding” Module

	28 Custom Perl Modules
	28.1 The “fsmap” Module
	28.2 The “clutils” Module
	28.3 The “clbonding” Module

	29 Application Directories
	29.1 Non-Standard Perl Packages

